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Abstract. A sequence s1, s2, . . . , sk of elements of a group G is called a valid ordering if the partial products
s1, s1s2, . . . , s1 · · · sk are all distinct. A long-standing problem in combinatorial group theory asks whether, for
a given group G, every subset S ⊆ G \ {id} admits a valid ordering; the instance of the additive group Fp is the
content of a well-known 1971 conjecture of Graham. Most partial progress to date has concerned the edge cases
where either S or G \ S is quite small. Our main result is an essentially complete resolution of the problem
for G = Fn

2 : we show that there is an absolute constant C > 0 such that every subset S ⊆ Fn
2 \ {0} of size at

least C admits a valid ordering. Our proof combines techniques from additive and probabilistic combinatorics,
including the Freiman–Ruzsa theorem and the absorption method.

Along the way, we also solve the general problem for moderately large subsets: there is a constant c > 0 such
that for every group G (not necessarily abelian), every subset S ⊆ G \ {id} of size at least |G|1−c admits a valid
ordering. Previous work in this direction concerned only sets of size at least (1 − o(1))|G|. A main ingredient
in our proof is a structural result, similar in spirit to the Arithmetic Regularity Lemma, showing that every
Cayley graph can be efficiently decomposed into mildly quasirandom components.

1. Introduction

1.1. The main problem. A sequence g1, g2, . . . , gn of elements of a (multiplicative) group G is a valid ordering
if the partial products

g1, g1g2, g1g2g3, . . . , g1 · · · gn

are all distinct. Which subsets of groups admit valid orderings? Variants of this natural problem have been
studied in many different cases over the years.

The first question in this direction appeared in 1961, when Gordon [17], motivated by constructions of complete
Latin squares, asked for which finite groups the entire group has a valid ordering. Gordon gave a complete
characterization in the abelian case: A finite (additive), nontrivial abelian group G admits a valid ordering
if and only if

∑
g∈G g ̸= 0, this being the obvious necessary condition for the existence of such an ordering.

In 1974, Ringel [40] posed the closely related problem of characterising the groups G whose elements can be
ordered as g1, . . . , gn in such a way that g1 = g1 · g2 · . . . · gn = id but otherwise all partial products are distinct.
The motivation for this question came from Ringel’s solution [41] of the Heawood map colouring conjecture.

The nonabelian case of Gordon’s problem is more subtle, since there are some small nonabelian groups (such as
S3) that for no apparent reason fail to have valid orderings. In 1981, Keedwell [29] posed the bold conjecture
that every sufficiently large nonabelian group has a valid ordering. Müyesser and Pokrovskiy [36] recently
proved Keedwell’s conjecture as a consequence of their more general probabilistic analogue of the Hall–Paige
Conjecture [11, 25] concerning the existence of transversals in multiplication tables. This work also shows that
large groups have an ordering, in the sense that Ringel asked for, if and only if the product of all group elements
(in any order) is an element of the commutator subgroup1.

In this paper we will be concerned not only with the case when an entire group G admits a valid ordering but
with the more general question of when an arbitrary subset S of a given group G admits a valid ordering. Notice
that when S contains the identity element, every possible valid ordering of S must start with the identity, since
otherwise two consecutive partial products would be equal. Thus, if G is abelian and

∑
g∈S g = 0, then there

cannot be a valid ordering of S. In order to avoid this obstruction, we restrict our attention to subsets S not
containing the identity, and the following is our central question.
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Question 1.1. For which groups G does every subset S ⊆ G \ {id} admit a valid ordering?

It seems feasible that the answer to this question is affirmative for every finite group G. At a first glance,
finding valid orderings for smaller subsets S might seem like an easier task, since there is more space to place
the partial products without creating collisions. However, the potential obstructions for small S are at least
as rich as for Gordon’s setting S = G \ {id}, since a small set S may itself be a subgroup of G, or could be a
complicated conglomeration of approximate subgroups and random-like sets. In the graph-theoretic formulation
of these problems, which we will describe below, Gordon’s setting corresponds to the complete graph case (in
particular, a directed variant of a well-known conjecture of Andersen [2]), whereas Question 1.1 corresponds to
a sparse analogue. Such sparse analogues in extremal graph theory tend to be harder and less well understood
than their dense counterparts.

The simplest instance of Question 1.1 is when G = Fp, for a prime p. This problem was first posed by
Graham [19] in 1971 and later reiterated in an open problems book of Erdős and Graham [12].

Conjecture 1.2 (Graham). Let p be prime. Then every subset of Fp \ {0} admits a valid ordering.

Most previous work towards Conjecture 1.2 has concerned the edge cases where either S or Fp \ S is very large.
The best result for small sets S is due to Bedert and Kravitz [4], who showed that every set S ⊆ Fp \ {0} of
size at most elog1/4 p has a valid ordering. For very large sets S, the aforementioned result of Müyesser and
Pokrovskiy [36] establishes Conjecture 1.2 for all sets S ⊆ Fp \{0} of size at least (1−o(1))p (and indeed proves
an analogous result for all finite groups; see Theorem 7.1). The intermediate regime remains open.

Various groups of authors (see, e.g., [1, 10, 26]) have considered instances of Question 1.1 other than G = Fp.
In particular, Alspach [8] conjectured an affirmative answer to Question 1.1 for all finite abelian groups G,
and Alspach and Liversidge [1] confirmed this for subsets of size up to 11. For extensions of this problem to a
nonabelian setting, see [9, 37] and the dynamic survey of Ollis [38].

In a different direction, Bucić, Frederickson, Müyesser, Pokrovskiy, and Yepremyan [5] have recently provided
an affirmative answer to an “approximate” relaxation of Question 1.1. They showed that every finite subset S

of any group G has an ordering in which all but o(|S|) partial products are distinct.

1.2. Main results. Despite the partial progress discussed above, there is no infinite class of groups G for which
we have a complete understanding of Question 1.1. Our main result remedies this situation for the family of
groups Fn

2 .

Theorem 1.3. There is an absolute constant C such that for all n ∈ N, every set S ⊆ Fn
2 \ {0} of size at least

C has a valid ordering.

We remark that our methods allow us to obtain the same result for the class of finite abelian groups of exponent
at most K for any constant K. For clarity of exposition, we describe only the 2-torsion case in this paper.

One can view Theorem 1.3 as resolving the “finite-field model” version of Conjecture 1.2. The study of additive
combinatorial problems over finite-field models is a well-established topic in its own right; see the decennial
surveys by Green [20], Wolf [45], and Peluse [39]. One of the key structural advantages of high-dimensional
vector-spaces over finite fields is their rich subgroup structure. Perhaps more unexpectedly, another key advan-
tage —crucial for our purposes— is that any moderately dense S ⊂ Fn

2 contains an abundance of small subsets
whose elements sum to 0. This is surprising given that 0-sum subsets are precisely what we need to avoid in
valid orderings. We refer the interested reader to Section 2 for a high-level overview of our proof strategy.

Although Fn
2 has its advantages, the simplest setting for Question 1.1 turns out to be Z, where a simple inductive

argument produces a valid ordering of any finite subset of Z \ {0} (see [30]). This fact plays a key role in the
work of Bedert and Kravitz [4], who resolve Conjecture 1.2 for subsets S of quasipolynomial size by leveraging
the fact that Fp looks locally like Z. Unfortunately, there is no such “lifting” trick in the finite-field model.

Our proof of Theorem 1.3 treats the “sparse S” and “dense S” regimes separately. Our argument for the
sparse case makes use of the specific structure of Fn

2 , but our argument for the dense case applies to general
(even nonabelian) groups. In particular, we are able to provide an affirmative answer to Question 1.1 if one
restricts attention to subsets S of size at least |G|1−c; this significantly improves on the result of Müyesser and
Pokrovskiy [36], which treats only subsets S of size (1 − o(1))|G|.

Theorem 1.4. There is an absolute constant c > 0 such that for any finite (possibly nonabelian) group G,
every subset S ⊆ G \ {id} of size at least |G|1−c admits a valid ordering.
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1.3. Background and connections to designs. Let us say a few words about the relation between Ques-
tion 1.1 and the theory of combinatorial designs. Gordon was initially interested in groups with valid orderings
because their multiplication tables can be used to construct complete Latin squares. A Latin square, also called
a quasigroup, is a group without the axiom of associativity; equivalently, a Latin square is an n by n grid filled
with the symbols {1, 2, . . . , n} in such a way that each symbol appears exactly once in each row and in each
column. A Latin square is called complete if for each pair of distinct symbols (i, j), the symbol j appears im-
mediately after the symbol i in exactly one row and in exactly one column. The additional degree of symmetry
in complete Latin squares gives them practical uses in the design of experiments (see, e.g., [3]), and they have
applications to the study of graph decompositions (see [38]). We point an interested reader to a wonderful book
[28] on the topic with a plethora of further connections and applications.

1.4. A weak nonabelian arithmetic regularity lemma. The proofs of Theorems 1.3 and 1.4 use a combi-
nation of the absorption method and various tools from additive combinatorics. We will give a more detailed
overview in the following section, but for now we will highlight one key intermediate result which may be of
independent interest. Recall that for a subset X of a group G, the right Cayley graph of G with respect to
X, denoted CayG(X), is the directed graph with vertex set G where there is a directed edge from g to gx for
each g ∈ G and x ∈ X. The adjacency matrix of a directed graph Γ = (V, E) is the |V | × |V | matrix MΓ
with rows and columns indexed by V , where the (u, v)-entry equals 1 if (u, v) is a directed edge and equals 0
otherwise. Note that MΓ is not necessarily symmetric, so it may have complex eigenvalues. When every vertex
of Γ has out-degree d, the adjacency matrix MΓ always has d as a trivial eigenvalue (and in fact d is the largest
eigenvalue in absolute value).

Theorem 1.5. Let σ ∈ (0, 1] and ε ∈ (0, 1/2). Let G be a finite (not necessarily abelian) group, and let S ⊆ G

be a subset with density σ = |S|/|G|. Then there is a subgroup H of G such that:

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) all non-trivial eigenvalues of the adjacency matrix of CayH(S ∩H) have real part at most (1−η)|S ∩H|,

where η := εσ2/1000.

Condition (2) asserts that CayH(S ∩ H) has a positive spectral gap, which turns out to be a natural mild
expansion condition for our purposes. In particular, this spectral condition allows us to lower bound the
number of edges across any cut of CayH(S ∩ H). We say that an η-sparse cut in a finite directed graph Γ is a
partition X1 ⊔ X2 of the vertex set of Γ such that there are fewer than η|X1| · |X2| (directed) edges from X1 to
X2. We will see below (Lemma 4.5) that (2) implies the purely combinatorial condition that CayH(S ∩ H) has
no ησ-sparse cut.

In a sense, Theorem 1.5 is analogous to the more familiar Arithmetic Regularity Lemma (ARL) of Green [21]
(see also [23]). Roughly speaking, the ARL offers a more refined decomposition where (2) is strengthened by
replacing (1 − η)|S| with η|S|. This stronger condition allows one to count occurrences of additive patterns
such as 3-term arithmetic progressions. Theorem 1.5 is unfortunately unable to count such delicate “local”
substructures, but in the context of Question 1.1 the mild quasirandomness condition (2) already provides
sufficiently strong information, and we shall see that it has several further redeeming qualities.

One advantage of our weak ARL is that it can handle nonabelian groups. Although there has been some prior
interest in nonabelian analogues of the ARL (e.g., model-theoretic approaches [6] can be used to give structure
theorems for sets with bounded VC-dimension), our weak ARL is the first such result that applies to arbitrary
subsets S. We further note that the decomposition of CayH(S ∩ H) provided by Theorem 1.5 is particularly
simple, in that it allows us to partition the vertex set G into the cosets of a subgroup H so that each of the
induced graphs CayxH(S ∩ H) is isomorphic to the mildly quasirandom Cayley graph CayH(S ∩ H). The
fact that these structured components are cosets makes the application in the context of Question 1.1 very
convenient. It is known on the other hand that if one wants to find such a decomposition where each component
is “strongly quasirandom” as in Green’s ARL, then already in the abelian setting one has to work with more
complicated components than subgroups, such as Bohr sets.

Another advantage of our Theorem 1.5 lies in the quantitative aspect. The polynomial dependence of η on σ is
ultimately the source of the polynomial improvement in Theorem 1.4. By contrast, it is well-established that
tower-type dependences are essential to the usual versions of regularity lemmas [21, 27]. Even for the weak
graph regularity lemma of Frieze and Kannan [16], exponential dependencies are required [7]. Therefore, usual
versions of regularity lemmas give useful information only about dense subsets, even in the simplest case of
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Cayley graphs over Fn
2 . In contrast, our Theorem 1.5 gives information about polynomially sparse sets S. Note

also that the index of H in G is O(1/σ) by condition (1), so our decomposition of G into H-cosets (with each
CayxH(S ∩ H) mildly quasirandom) uses only O(1/σ) pieces.

We also mention that Theorem 1.5 is closely related to a purely graph-theoretical result of Kühn, Lo, Osthus,
and Staden [32] (see also [24, 33]) that provides a similar structural decomposition for dense d-regular graphs.
More precisely, these authors show that any regular graph of density σ can be decomposed into clusters in
such a way that there are very few edges between different clusters, and there are no f(σ)-sparse cuts within
any single cluster; we refer the reader to [24] for further details. Our Theorem 1.5 is a more specialised result
because it pertains only to Cayley graphs, but it has the dual advantages of giving group-theoretic information
about the clusters, and of enjoying polynomial bounds (as contrasted with the exponential bounds in [32]).

We anticipate that Theorem 1.5 will find further applications in the study of Cayley graphs. For example, in
upcoming work, Bedert, Draganić, Müyesser, and Pavez-Signé apply Theorem 1.5 to the well-known conjecture
of Lovász asserting that every (connected) Cayley graph is Hamiltonian.

1.5. Organization of the paper. In Section 2 we give a high-level overview of our main ideas. The results
in this section are only for expository purposes and are not used in the remainder of the paper. Section 3
contains notation and other preliminaries. We then turn to our weak nonabelian regularity lemma in Section 4,
which is split into one subsection for the special case of Fn

2 and one subsection for the case of general finite
groups. In Section 5 we prove a very flexible asymptotic result for the dense setting under the assumption
of a certain expansion condition (as guaranteed by the natural output of Section 4). In Section 6 we prove
our absorption lemmas. This section is divided into Section 6.1, where we show how to build our absorbing
structure, and Section 6.2, where we show how this structure lets us absorb a small set of leftover colours. In
Section 7 we establish our main result over Fn

2 (Theorem 1.3) in the dense case. In Section 8 we complete
the proof of Theorem 1.3 by analysing the sparse case. This section is split into Section 8.1, where we deal
with the “structured” case, and Section 8.2, where we deal with the “random-like” case. In Section 9 we prove
Theorem 1.4, which provides an affirmative answer to Question 1.1 for polynomial-density subsets of general
groups. Finally, we make some concluding remarks in Section 10.

We remark that the arguments about Fn
2 in Sections 4.1 and 7 are not strictly speaking necessary since they

are subsumed by the more general results in Sections 4.2 and 9. We include the analysis of these special
cases separately because several of the arguments simplify, leading to a more direct and streamlined proof of
Theorem 1.3. This case also provides an opportunity to build intuition for the more technical general results
that follow.

Acknowledgements. We are grateful to Mira Tartarotti and Julia Wolf for helpful remarks concerning arith-
metic regularity lemmas. The first author gratefully acknowledges financial support from the EPSRC. The
second and fifth authors were supported by the National Science Foundation under Grant No. DMS-1928930
during their Spring 2025 residence at the Simons Laufer Mathematical Sciences Institute in Berkeley, Califor-
nia. The third author was supported in part by the NSF Graduate Research Fellowship Program under grant
DGE–203965.

2. Overview

Our arguments combine several ideas from different parts of combinatorics, including inverse problems and
Fourier analysis from additive combinatorics, absorption from probabilistic combinatorics, and robust expansion
from extremal combinatorics. In the interest of making our proofs accessible to a wide audience, we will first give
a high-level overview of the main ideas in a simplified context. This purely expository section is not logically
necessary for the rest of the paper.

It is useful to recast the main problem in the language of finding rainbow paths in Cayley graphs. In general, a
rainbow subgraph of an edge-coloured graph is a subgraph all of whose edges have different colours; see [5, 34, 43]
for more context on the rich study of rainbow subgraphs from a graph-theoretic perspective. We can view the
Cayley graph CayG(S) (recall the definition from above) as an edge-coloured digraph with colour set S, where
the directed edge from g to gx has the colour x for each g ∈ G and x ∈ S.

Observation 2.1. Let S be a finite subset of a group G. Then, S has a valid ordering if and only if CayG(S)
has a directed rainbow path with |S| − 1 edges.
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Proof. If s1, . . . , s|S| is a valid ordering of S, then

s1 → s1s2 → · · · → s1s2 · · · s|S|

is a directed rainbow path in CayG(S) with |S| − 1 edges. Conversely, any directed rainbow path in CayG(S)
with |S| − 1 edges is of the form

gsσ(1) → gsσ(1)sσ(2) → · · · → gsσ(1)sσ(2) · · · sσ(|S|)

for some permutation σ of [|S|] and g ∈ G, and then sσ(1), sσ(2), . . . , sσ(|S|) is a valid ordering of S. □

Therefore, our goal is to find a rainbow path of length |S|−1 in CayG(S). We use a “99% → 100% framework”,
more commonly known in the world of probabilistic combinatorics as the “absorption method” since its codi-
fication by Rödl, Ruciński, and Szemerédi [42] in 2008 (though its origins can be traced back farther to [13]).
The rough idea is that we first find a rainbow path of length 0.99|S| and then upgrade this partial rainbow path
to a rainbow path of length |S| − 1.2 We carry out this upgrade using a certain “absorbing structure” that we
set aside before finding the 99% rainbow path. We treat these two steps in the following two subsections.

2.1. 99%-results. In this subsection we will describe how to find a rainbow path of length 0.99|S| in CayFn
2
(S).

Such an approximate result was already established recently in [5, Theorem 1.5], but this result is not robust
enough for our framework to be able to convert it into a 100% result. The approach we use in the present paper
for the 99% part is significantly different and in particular more robust in several ways. A key advantage of our
new methods is that we can establish the existence of rainbow paths of length 0.99|S| in random subgraphs of
CayFn

2
(S), and this flexibility is crucial for the second step of our 99% → 100% framework.

A central idea is the dichotomy between structure and randomness from additive combinatorics. We will decom-
pose our given subset S ⊆ Fn

2 into a “structured” part and a “random-like” part. We measure structure/ran-
domness according to the doubling constant |S + S|/|S|, where we have written S + S := {x + y : x, y ∈ S}.
Small doubling corresponds to structure; and its opposite is “everywhere-expansion”, in the following sense.

Definition 2.2. Let γ, K > 0. A subset E ⊆ Fn
2 is (γ, K)-everywhere-expanding if every subset E′ ⊆ E of size

γ|E| satisfies |E′ + E′| ≥ K|E′|.

To obtain our decomposition of S, we iteratively remove subsets of size at least γ|S| and doubling at most K as
long as such subsets exist; the remainder is then guaranteed to be (γ, K)-everywhere-expanding. The following
lemma codifies the outcome of this procedure.

Proposition 2.3. Let γ, K > 0. We can decompose any subset S ⊆ Fn
2 as S = S1 ∪ S2 ∪ · · · ∪ St ∪ E, where

(1) |Si| ≥ γ|S| and |Si + Si| ≤ K|Si| for all i;
(2) E is (γ, K)-everywhere-expanding.

Here, one should think of the Si’s as the structured pieces of S and of E as the random-like piece. Two extreme
possible outcomes of the above lemma are E = ∅ and E = S. In the former case S completely decomposes
into structured pieces, while in the latter case all of S is random-like; these two cases naturally require different
treatments. Our analysis of the general case splits into two cases depending on the size of E.

We start by illustrating how to solve the 99% problem when the random-like part E is all of S. For this we will
need the following standard additive-combinatorial tool (see [44, Lemma 2.6]).

Lemma 2.4 (Ruzsa triangle inequality). For subsets V, S of an abelian group, we have |V + S|2 ≥ |V | · |S + S|.

We can now establish a 99%-result for the model case of an everywhere-expanding set S. This case per se does
not figure in our main argument, but it serves as an excellent illustration of the ideas involved. The strategy
is that we will build a long rainbow path two vertices at a time, and at each step we will make sure that we
have enough options to continue extending the path at the subsequent step. Extending two vertices at a time
instead of one vertex at a time is what allows us to make use of the everywhere-expanding hypothesis (which
guarantees that sumsets of large subsets of S grow).

Proposition 2.5. Let 0 < γ < 1/10 and K > 0 satisfy K > 10/γ4. Suppose that S ⊆ Fn
2 \ {0} is a (γ, K)-

everywhere-expanding set of size |S| ≥ 2/γ. Then, CayFn
2
(S) has a rainbow path of length (1 − 2γ)|S|.

2Of course, the constants 0.01 and 0.99 serve schematic purposes and should not be taken too literally.
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Proof. For each t = 0, 1, 2, . . . , (1/2 − γ)|S|, we will build a rainbow path

Pt = (v0 → v1 → · · · → v2t)

in CayFn
2
(S) such that v2t has at most γ|S| neighbours in Pt, i.e.,

|(v2t + S) ∩ {v0, . . . , v2t}| ≤ γ|S|.

For t = 0, we can take v0 to be any element of Fn
2 . Suppose that we have already constructed Pt and we want to

extend it to Pt+1. Since v2t has at most γ|S| neighbours in Pt, among the |S|−2t > 2γ|S| colours not appearing
in Pt, there is a set S′ ⊆ S consisting of 2γ|S| − γ|S| = γ|S| colours such that

(1) (v2t + S′) ∩ {v0, . . . , v2t} = ∅;

let S′′ consist of some γ|S| of the remaining colours not appearing in Pt. The Ruzsa triangle inequality and the
(γ, K)-everywhere-expanding hypothesis give

(2) |v2t + S′ + S′′| ≥
√

|S′| · |S′′ + S′′| ≥
√

γ|S| · Kγ|S| =
√

K · γ|S|.

We will obtain the path Pt+1 by setting

v2t+1 := v2t + s′, v2t+2 := v2t + s′ + s′′

for suitable s′ ∈ S′, s′′ ∈ S′′. Our definitions of the sets S′, S′′ guarantee that Pt+1 is a rainbow walk; we show
that we can choose s′, s′′ so that this walk is in fact a path. Note that v2t+1 is disjoint from Pt by (1) for all
choices of s′ ∈ S′. We must check that v2t+2 does not lie on Pt and that v2t+2 has at most γ|S| neighbours in
Pt ∪ {v2t+1}.

Say that a vertex v ∈ Fn
2 is bad if it either lies on Pt or has at least (γ/2)|S| neighbours in Pt. Since there are

at most |S| vertices on Pt and each is incident to |S| edges, the number of bad vertices is at most

(2t + 1) + |S| · |S|
(γ/2)|S|

≤ |S| + (2/γ)|S| <
√

K · γ|S|.

So by (2), we can choose s′ ∈ S′, s′′ ∈ S′′ so that v2t+2 is not bad. It follows that v2t+2 has at most
(γ/2)|S| + 1 ≤ γ|S| neighbours in Pt ∪ {v2t+1, v2t+2}, as desired. □

This proof has a fair bit of flexibility. For example, we had plenty of viable choices, say, at least 1
2
√

Kγ|S|
choices, for v2t+2 at each step. Now, if P ′ is a fixed rainbow path of length 1000 (say) with colours not
appearing in Pt, then we can append a translate of P ′ to one of our viable choices for v2t+2 in such a way that
we still get a path, and that the final vertex of the resulting long rainbow path has few neighbours on the new
path itself. In other words, at the cost of using two colours from the given everywhere-expanding set, we can
incorporate 1000 arbitrary colours into our rainbow path. A careful implementation of this idea leads to the
following proposition ensuring a 99% rainbow path in CayFn

2
(S) whenever the unstructured piece of S has size

at least 0.01|S| (see Theorem 8.9 for more details).

Proposition 2.6. Let S ⊆ Fn
2 , and suppose that there is a (0.001, 1020)-everywhere-expanding subset E ⊆ S of

size at least 0.01|S|. Then CayFn
2
(S) has a rainbow path of length 0.99|S|.

In order to show that CayFn
2
(S) has a rainbow path of length 0.99|S| for all choices of S, it remains only to

handle the case where at least 99% of S is structured, in the sense of Proposition 2.3. To this end, suppose that
at least 99% of S can be expressed as the union of sets S1, . . . , St each with size at least γ|S| and doubling at
most K. Notice that t ≤ 1/γ is bounded. Provided that we can (somewhat flexibly) find a 99% rainbow path
in each CayFn

2
(Si) individually, we will be able to concatenate translates of these paths using ideas similar to

those sketched above (see Lemma 8.6 for more details).

With this in mind, let us turn our attention to the 99% problem for a single structured piece. Our analysis
of this case starts with the celebrated Freiman–Ruzsa Theorem, which provides a description of sets of small
doubling. Green and Tao [22] proved a strong result of this type in Fn

2 , and we will use the following slight
improvement later formulated in [14].

Theorem 2.7. Let K ≥ 1. If S ⊆ Fn
2 satisfies |S + S| ≤ K|S|, then there is a subspace H of Fn

2 such that
S ⊆ H and |H| ≤ 22K |S|.

The recently proven Polynomial Freiman–Ruzsa Conjecture over Fn
2 [18] provides the additional information

that any subset S ⊆ Fn
2 of doubling at most K can be covered by KO(1) translates of a “small” subspace of



ON GRAHAM’S REARRANGEMENT CONJECTURE OVER Fn
2 7

Fn
2 . Using this result in place of Theorem 2.7 would improve the quantitative dependencies among the various

parameters in our proof, but such an improvement would be inconsequential for the final result Theorem 1.3.
Hence, we prefer to work with the conceptually simpler Theorem 2.7 despite its quantitative inefficiency.

Theorem 2.7 effectively reduces the structured case to the case of dense subsets of subspaces of Fn
2 , which, of

course, are isomorphic to Fm
2 for m ≤ n. Such a reduction is useful because it gives us access to so-called “robust

expansion” tools, as in the work of Lo, Kühn, Osthus, and Staden [32] mentioned above, which generally apply
only in the setting of dense graphs. We will return to this theme in Section 5; in the meantime we refer the
reader to [5, Sections 4 and 5] and [24, 32] for more context.

Once we reduce to the dense case, we can apply a result from [5] (based on robust expansion tools) to obtain a
99% path in each CayFn

2
(Si). This is not sufficient, however: For other parts of our argument (concatenating the

paths for different Si’s and carrying out the later absorption step), we need additional flexibility in prescribing
where within CayFn

2
(Si) the 99% path lives. It is here that Theorem 1.5 comes to the rescue by allowing us to

pass from the Cayley graph of a dense set to a robust expander whose vertex set corresponds to a subgroup
of Fn

2 . We will prove Theorem 1.5 in full generality in Section 4. The proof of Theorem 1.3 requires only the
special case of Cayley graphs on Fn

2 , where the following slightly stronger result holds.

Lemma 2.8. Let ε ∈ (0, 1/2) and write N = 2n. Let S ⊆ Fn
2 have size |S| ≥ σN . Then, there is a subspace H

of Fn
2 satisfying

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) CayH(S ∩ H) has no εσ/2-sparse cuts.

The proof of Theorem 1.5 simplifies considerably in the special setting of Fn
2 , and we include a separate proof

of this case in Section 4 since it is all that is needed for the proof of Theorem 1.3. In particular, the reader who
wishes only to see a proof of Theorem 1.3 need not bother with our nonabelian Fourier-analytic arguments for
general groups.

Lemma 2.8 tells us that by sacrificing a tiny proportion of the structured set S, we may assume that S generates
a Cayley graph with good expansion properties within the subspace generated by S. This subspace property
will later prove useful since we will be able to “jump” among cosets when linking up translates of various paths;
see Lemma 5.7 below.

2.2. 99% to 100%-results. In this subsection we will discuss how to upgrade a 99% result to a 100% result.
The main framework has three steps:

Step 1. Build a flexible “absorbing” structure within CayG(S).
Step 2. Run the 99% strategy to obtain a rainbow path using 99% of the colours in S.
Step 3. Use the absorbing structure to integrate the remaining 1% of colours of S into the rainbow path.

Let us break this down step by step.

Step 1. The main idea for building our flexible structure is exploiting popular sums. For simplicity, consider
the case where the group G is abelian. Suppose S ⊆ G contains elements a, b, c summing to 0, and let d be
some other element of S. Then, for any v ∈ G we can build a path from v to v + d either directly as v → v + d

(using only the colour d) or as

v → v + a → v + a + d → v + a + d + b → v + a + d + b + c = v

(using the colours a, b, c, d). See Figure 1. We note that for the latter case, some mild conditions on a, b, c, d are
required in order for this to be an actual path rather than a walk. Thus, if we have a rainbow path containing
an edge of colour d, and the above alternative route does not intersect the path elsewhere, then we may choose
whether or not to add the colours a, b, c in addition to d.

We will see in Section 6 that with some minor caveats (including using 6-tuples instead of triples), we can
find not only a single quadruple (a, b, c, d) as above but rather many disjoint such quadruples (ai, bi, ci, di) for
1 ≤ i ≤ |S|/10 (say) with ai +bi +ci = 0. This is possible in Fn

2 because 0 is a “popular sum” for any sufficiently
large subset S ⊂ Fn

2 . In Lemma 6.6, we will see how to string together the gadgets from the previous paragraph
to obtain a long rainbow absorbing path in which for each i, there is a shortcut that avoids precisely ai, bi, ci.
(When we refer to an absorbing path, we mean the path that takes the long route through each gadget.) Thus



8 ON GRAHAM’S REARRANGEMENT CONJECTURE OVER Fn
2

we may choose, independently for each i, whether or not to take the colours ai, bi, ci out of our rainbow path.
See Figure 2. The benefit of this manoeuvre is that we may later flexibly use the freed-up triples ai, bi, ci

elsewhere, and below in Step 3 we will see how this flexibility will turn out to be very useful.

For nonabelian groups G, our absorbing structure is more delicate because we cannot rely on an abundance of
small subsets of S with the same product. We will instead use a variant of the so-called “distributive absorption”
strategy, first introduced in [35]. We defer further explanation to Section 9.

a

b

c

d

d

v v + d

Figure 1. Two paths from v to v+
d, one using only the colour d, and
the other using the colours a, b, c, d.

Figure 2. An absorbing path of gadgets. The path
indicated in purple shows a subpath that uses some
triples of colours ai, bi, ci, but not others.

Step 2. We take the last vertex of the absorbing path from Step 1 and use it as the first vertex for a 99%
rainbow path as described in the previous subsection. See Figure 3. (More precisely, the 99% path will use
99% of the colours not already used in the absorbing path.) We need to ensure that the absorbing path is
vertex-disjoint from the 99% path. In the everywhere-expanding case from the previous subsection, this is not
too difficult since we always have enough choices to avoid an absorbing path fixed from the outset. In the
structured case, however, we do not have such freedom, so instead we will build the absorbing path and the
99% path in disjoint random subsets of G; this introduces several technical difficulties that we will gloss over
for now.

Figure 3. An absorbing path connected to a 99% path (drawn dashed).

Step 3. We have now built a rainbow path P that uses 99% of the colours of S and contains a long absorbing
path. The heart of the matter is using the flexibility of our absorbing path to integrate the remaining 1% of the
colours. Let L denote the set of “leftover” colours not yet used. The key insight is that we can iteratively reduce
the size of L by “activating” an absorbing gadget ai, bi, ci, di and using the freed-up colours ai, bi, ci elsewhere.

As long as |L| ≥ 3, choose some three elements ℓ1, ℓ2, ℓ3 ∈ L. Consider all of the 4-edge extensions of P using
the colours ai, ℓ1, ℓ2, ℓ3 in this order, for i ranging over the indices of the absorbing gadgets that have not yet
been activated. See Figure 4. This figure is a bit misleading since the 4-edge paths may intersect one another
or earlier parts of P , but let us suppose for the moment that we can find some 4-edge path, corresponding to
the index i0, which does not intersect P . Then, we modify P as follows: we “activate” the gadget indexed by
i0 and free up the colours ai0 , bi0 , ci0 by taking the shortcut along the colour di0 ; and we extend P by adding
the length-4 path with index i0. We then update the leftover set L by removing ℓ1, ℓ2, ℓ3 and adding bi0 , ci0 . In
total, we have succeeded in reducing the size of L by 1.

a1 a2

ak

ℓ1 ℓ2 ℓ3

ℓ1 ℓ2 ℓ3

ℓ1 ℓ2 ℓ3

Figure 4. Various options for extending our long rainbow path by a 4-edge path. To append
one of the 4-edge paths, we activate the corresponding gadget.

We have omitted two important technical points from this discussion. The first point concerns ensuring that
we can always find a length-4 path that does not intersect other parts of our structure. How we ensure this
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depends on whether or not S has an everywhere-expanding part. If S does have an everywhere-expanding part,
then we can use this expansion to make our candidate length-4 extensions “spread out”. We will show that in
the remaining case of structured S, we can carry out Steps 1, 2, and 3 in disjoint random vertex subsets of
CayG(S), effectively avoiding this issue altogether. The second point is that our iterative procedure terminates
once |L| drops below 3. Saturating the remaining 2 colours is a delicate matter that we will discuss later in the
paper.

3. Notation and Prerequisites

Given a set X, a p-random subset of X is obtained by sampling each element of X with probability p, indepen-
dently of all other elements.

We will need the following basic concentration bound.

Lemma 3.1 (Chernoff’s inequality). Let X be a sum of independent Bernoulli random variables with E(X) = µ.
Then, for every t > 0,

• P(X ≤ µ − t) ≤ exp(−t2/(2µ));
• P(X ≥ µ + t) ≤ exp(−t2/(2µ + t)).

The digraphs we consider are loopless, and for each pair (u, v) of distinct vertices, we allow at most one edge
from u to v, which we denote by (u, v). We do, however, allow both edges (u, v) and (v, u) to appear in the same
digraph. If G is a (possibly edge-coloured) digraph, then for U, V ⊆ V (G), we write eG(U, V ) to denote the
number of edges (u, v) with u ∈ U and v ∈ V . As special cases, for a vertex v ∈ V (G), we denote the out-degree
of v by deg+

G(v) := eG({v}, V (G)) and the in-degree of v by deg−
G(v) := eG(V (G), {v}). We denote the minimum

out-degree and in-degree of G by δ+(G) and δ−(G), respectively, and we write δ±(G) := min{δ+(G), δ−(G)}
for the minimum semi-degree of G.

Nonabelian Fourier analysis. We shall make use of some nonabelian Fourier analysis for finite groups in
order to prove the regularity result in Theorem 1.5; we record all the basic properties that we need here. Again,
we mention that to prove Lemma 2.8, it suffices to use Fourier analysis over Fn

2 . The reader who wishes to
focus on this result may skip ahead to the end of this section, where we separately state the basic properties of
Fourier analysis over Fn

2 .

Let G be a finite (possibly nonabelian) group. We use the following standard notation:

• |G|: the order of G,
• Ĝ: the set of irreducible complex representations of G,
• ρ ∈ Ĝ: a representation ρ : G → GL(Vρ), which means that ρ is a group homomorphism from G to

GL(Vρ),
• dρ = dim Vρ is the degree of the representation ρ.

We will write triv for the trivial irreducible representation. For a vector v ∈ Vρ, we will write ∥v∥2
Vρ

= ⟨v, v⟩Vρ

where we take ⟨·, ·⟩Vρ to be a Hermitian inner product in each of the vector spaces Vρ, for each irreducible
representation ρ. By Weyl’s unitary trick, we can and will always assume that each of the representations ρ is
unitary with respect to ⟨·, ·⟩Vρ

, meaning that all the matrices ρ(g), g ∈ H are unitary so that ⟨ρ(g)v, ρ(g)v⟩Vρ
=

⟨v, v⟩Vρ for all v ∈ Vρ and g ∈ G. Recall also that a matrix A is said to be unitary if it satisfies A
T = A−1.

For a function f : G → C, the Fourier transform of f at ρ ∈ Ĝ is given by

f̂(ρ) =
∑
x∈G

f(x) ρ(x) ∈ Cdρ×dρ .

We shall exclusively consider Fourier transforms 1̂T (ρ), ρ ∈ Ĝ of indicator functions of sets T ⊂ G in this paper.
We note that the eigenvalues of the Fourier coefficient matrices 1̂T (ρ), ρ ∈ Ĝ are precisely the eigenvalues of
the adjacency matrix of the directed graph CayH(T ) (in fact, each of the eigenvalues of 1̂T (ρ) appears with
multiplicity dρ as an eigenvalue of the adjacency matrix of CayH(T )). The value of the function f at y ∈ G can
be recovered from its Fourier transform via the inversion formula
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f(y) = 1
|G|

∑
ρ∈Ĝ

dρ · Tr
(

f̂(ρ) · ρ(y)∗
)

where ρ(x)∗ = ρ(g)
T

denotes the conjugate transpose of ρ(x), and where Tr is the trace. Parseval’s identity
states that for f : G → C we have ∑

x∈G

|f(x)|2 = 1
|G|

∑
ρ∈Ĝ

dρ · ∥f̂(ρ)∥2
F

where ∥ · ∥F is the Frobenius norm ∥A∥2
F =

∑
i,j |Aij |2 = Tr(AA∗).

We shall also make use of the following important property for the Fourier transform of the convolution of two
functions f, g : G → C, which is defined as (f ∗ g)(x) =

∑
y∈G f(y)g(y−1x). The Fourier transform of the

convolution satisfies f̂ ∗ g(ρ) = f̂(ρ) · ĝ(ρ).

An important observation is that, for sets X, Y, T ⊂ G, the number of solutions (x, y, t) ∈ X ×Y ×T to xyt = id
can be written using convolutions as 1X ∗ 1Y ∗ 1T (id), and hence the formula for the Fourier transform of a
convolution and Fourier inversion allow us to express this count as 1

|G|
∑

ρ∈Ĝ
dρ · Tr

(
1̂X(ρ)1̂Y (ρ)1̂T (ρ)

)
. Let us

state one more elementary fact, namely that the Fourier transform of the indicator function of the whole group
G is given by

1̂G(ρ) =
{

|G|, if ρ = triv,
(0)dρ×dρ , if ρ ∈ Ĝ is non-trivial,

where (0)dρ×dρ
denotes the dρ by dρ zero matrix. These are all the properties that we require in this paper, for

a more extensive overview of the basics of nonabelian Fourier analysis, we refer the reader to [15].

Fourier analysis over Fn
2 . For the convenience of the reader who wants a streamlined proof of Theorem

1.3, we briefly discuss the results above in the specialised setting where G = Fn
2 . The dual group Ĝ = F̂n

2 of
characters on Fn

2 is isomorphic to Fn
2 , with each character γ ∈ Ĝ being of the form

γξ : Fn
2 → R : x 7→ (−1)⟨ξ,x⟩

for a ξ ∈ Fn
2 , where ⟨ξ, x⟩ =

∑n
i=1 ξixi is the standard dot product over Fn

2 . For a function f : Fn
2 → C, its

Fourier transform is
f̂(γ) =

∑
x∈Fn

2

f(x)γ(x).

We have the inversion formula f(x) = 1
|G|

∑
γ∈Ĝ f̂(γ)γ(x), and Parseval’s formula states that∑

x∈Fn
2

|f(x)|2 = 1
|G|

∑
γ∈Ĝ

|f̂(γ)|2.

For f, g : Fn
2 → C, their convolution f ∗ g is defined as (f ∗ g)(x) =

∑
y∈Fn

2
f(y)g(x + y), and the Fourier

transform of a convolution satisfies f̂ ∗ g(γ) = f̂(γ)ĝ(γ). Finally, we note that the Fourier transform of the
indicator function of the whole group G = Fn

2 is given by

1̂G(γ) =
{

|G|, if γ = 0 is the trivial character,
0, if γ ∈ Ĝ \ {0}.

4. A weak nonabelian regularity lemma for finding expander Cayley subgraphs

The goal of this section is to prove the nonabelian regularity lemma Theorem 1.5, which says that given a subset
S of a finite group G, we can find a subgroup H of G such that H contains most of S and CayH(H ∩ S) is
mildly quasirandom. We restate Theorem 1.5 now for the reader’s convenience.

Theorem 1.5. Let σ ∈ (0, 1] and ε ∈ (0, 1/2). Let G be a finite (not necessarily abelian) group, and let S ⊆ G

be a subset with density σ = |S|/|G|. Then there is a subgroup H of G such that:

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) all non-trivial eigenvalues of the adjacency matrix of CayH(S ∩H) have real part at most (1−η)|S ∩H|,

where η := εσ2/1000.
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Let us digress and make a few remarks. First, the quadratic dependence of η on σ is optimal, as illustrated
by the case where S is an arithmetic progression in Fp. Second, our arguments can be modified to produce a
subgroup H and an element x ∈ G such that |S ∩ (x−1H)| ≥ (1 − ε)|S|, and all non-trivial eigenvalues of the
adjacency matrix of CayH(H ∩ (xS)) have absolute value (rather than real part) at most (1 − η)|(xS) ∩ H|.
Third, another minor variation of the proof shows that there is a subgroup H such that |S ∩ H| ≥ (1 − ε)|S|,
and all non-trivial eigenvalues of the adjacency matrix of CayH(S ∩ H) have real part at most (1 − η)|S ∩ H|,
where η := εδ2

1000| log σ| and δ := |S ∩ H|/|H| is the density of S within H (rather than the density σ of S within
G).

Recall from Section 3 that the spectrum of the adjacency matrix of CayG(S) is precisely the union of the spectra
of the Fourier coefficient matrices 1̂S(ρ) for ρ ∈ Ĝ. Thus, the second condition in Theorem 1.5 can be formulated
in terms of S ∩ H ⊆ H having a spectral gap bounded away from 0, in the sense of Definition 4.3 below. The
connection between spectral gaps, quasirandomness, and edge-expansion is by now a standard theme in spectral
graph theory; see, e.g., the survey [31]. Our formulation of this connection, encapsulated in Lemma 4.5 below,
relies on the notion of an η-sparse cut (as defined in the introduction following the statement of Theorem 1.5)
and leads to the following corollary of Theorem 1.5 that will be convenient for our later applications.

Corollary 4.1. Let σ ∈ (0, 1] and ε ∈ (0, 1/2). Let G be a finite group (not necessarily abelian), and let S ⊆ G

be a subset with density σ = |S|/|G|. Then there is a subgroup H of G such that

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) CayH(S ∩ H) has no εσ3/1000-sparse cuts.

We remind the reader that CayH(S ∩ H) has no η-sparse cuts if for every partition H = X1 ⊔ X2 we have

#{(x1, x2) ∈ X1 × X2 : x−1
1 x2 ∈ S} ≥ η|X1||X2|.

Our proof of Theorem 1.5 uses nonabelian Fourier analysis. As a warm-up, we will start by proving Theorem 1.5
for the group Fn

2 , where the argument simplifies considerably due to the nature of the Fourier transform on
Fn

2 . This simplified argument also yields a somewhat better (in fact, optimal) quantitative dependence of the
sparse-cut parameter on the density σ. We remark that only this special case is necessary for the proof of
Theorem 1.3, so the reader who is interested only in that result may safely skip our treatment of the general
case of Theorem 1.5.

4.1. The Fn
2 case. Here is Lemma 2.8 restated for the reader’s convenience.

Lemma 2.8. Let ε ∈ (0, 1/2) and write N = 2n. Let S ⊆ Fn
2 have size |S| ≥ σN . Then, there is a subspace H

of Fn
2 satisfying

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) CayH(S ∩ H) has no εσ/2-sparse cuts.

Before proving this lemma, we will need the following auxiliary result which states that the Cayley graph of
a subset T ⊂ Fn

2 has no sparse cuts provided that it has a spectral gap. As we discussed at the start of this
section, results of this flavour are well-known.

Lemma 4.2. Let T ⊂ H = Fn
2 have a spectral gap

max
γ∈Ĥ:γ ̸=0

1̂T (γ) ≤ (1 − β)|T |,

then CayH(T ) has no βτ -sparse cuts, where τ = |T |/|H|.

Proof of Lemma 4.2. Let H = X1 ∪ X2 be a partition of H, so that our goal is to show that #{(x1, x2) ∈
X1 × X2 : x1 − x2 ∈ T} ⩾ βτ |X1||X2|. By the formula for the Fourier transform of a convolution and Fourier
inversion, we can write

#{(x1, x2) ∈ X1 × X2 : x2 − x1 ∈ T} = 1X1 ∗ 1X2 ∗ 1T (0) = 1
|H|

∑
γ∈Ĥ

1̂X1(γ)1̂X2(γ)1̂T (γ).
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Since the contribution from the trivial character γ = 0 to the right hand side is |X1||X2||T |/|H| = τ |X1||X2|,
it suffices to show that

−1
|H|

∑
γ∈Ĥ:γ ̸=0

1̂X1(γ)1̂X2(γ)1̂T (γ) ≤ (1 − β)τ |X1||X2|(3)

as this would show precisely that #{(x1, x2) ∈ X1 × X2 : x1 − x2 ∈ T} ≥ βτ |X1||X2|. Note that as X1, X2
partition H, we have that

1̂X1 + 1̂X2 = 1̂H =
{

|H|, if γ = 0
0, otherwise.

So 1̂X2(γ) = −1̂X1(γ) at all non-zero characters γ. Hence,
−1
|H|

∑
γ∈Ĥ:γ ̸=0

1̂X1(γ)1̂X2(γ)1̂T (γ) = 1
|H|

∑
γ∈Ĥ:γ ̸=0

|1̂X1(γ)|21̂T (γ).

Now we simply invoke the spectral gap assumption to bound this by
(1 − β)|T |

|H|
∑
γ ̸=0

|1̂X1(γ)|2 = (1 − β)|T |
(

|X1| − |X1|2

|H|

)
= (1 − β)τ |X1||X2|

where we used Parseval to calculate 1
|H|

∑
γ ̸=0 |1̂X1(γ)|2 = |X1|−1̂X1(0)2/|H| = |X1|−|X1|2/|H| = |X1||X2|/|H|

as |X2| = |H| − |X1| since X1, X2 partition H. This establishes (3) and hence completes the proof. □

It is now a simple matter to prove our result over Fn
2 due to the nature of the Fourier transform in this group.

Namely, the characters γ ∈ F̂n
2 are precisely those functions of the form γξ : x ∈ Fn

2 7→ (−1)⟨x,ξ⟩ for some vector
ξ ∈ Fn

2 , where ⟨x, ξ⟩ =
∑n

j=1 xjξj is the standard dot product in Fn
2 . Hence, if we write

⟨γ⟩⊥ = {x ∈ Fn
2 : γ(x) = 1} = {x ∈ Fn

2 : ⟨x, ξ⟩ = 0}

for the codimension one subspace defined by γ, then for any subset T ⊂ Fn
2 , the Fourier transform of T at γ is

simply given by
1̂T (γ) =

∑
x∈T

γ(x) =
∑
x∈T

(−1)⟨x,ξ⟩ = |T ∩ ⟨γ⟩⊥| − |T ∩ (x0 + ⟨γ⟩⊥)|,

where x0 + ⟨γ⟩⊥ is the non-trivial coset of ⟨γ⟩⊥ in Fn
2 . In particular, if T has no spectral gap (in the sense of

Lemma 4.2), one immediately sees that most of T is contained in the proper subspace ⟨γ⟩⊥ of Fn
2 .

Proof of Lemma 2.8. Let ε ∈ (0, 1/2) be given. Let S ⊂ Fn
2 and we define σ = |S|/N and δ = εσ/2. We

proceed by a basic density increment argument, starting with S0 = S and H0 = Fn
2 . We will iteratively

construct subgroups Hj < Hj−1 and sets Sj := Sj−1 ∩ Hj satisfying for all j that:

(4) |Sj+1| ≥ (1 − ε

2j+1 )|Sj |.

Suppose now that we have constructed Hj < Hj−1 < · · · < H0 and Si = S ∩ Hi, for i ≤ j, satisfying (4). Then
we certainly have

(5) |Sj | ≥ |S|
∞∏

i=0
(1 − ε

2i+1 ) ≥ (1 − ε)|S|.

So item (1) from the conclusion of Lemma 2.8 is satisfied for all Sj . If there is no δ-sparse cut in CayHj
Sj , then

item (2) is also satisfied and we are done. Else, by Lemma 4.2 there is a non-trivial character γ ∈ Ĥj satisfying

1̂Sj
(γ) ≥

(
1 − δ

|Hj |
|Sj |

)
|Sj | ≥

(
1 − δ

2j−1σ

)
|Sj |

since we noted that Sj has size at least (1 − ε)|S| ≥ |S|/2 as ε < 1/2, and hence Sj has density at least
2j−1σ in Hj because Hj is a subgroup of H0 of codimension j (note that at each stage i we find Hi which
is a proper subgroup of Hi−1). Now define Hj+1 = ⟨γ⟩⊥ which is a subspace of Hj of codimension 1. As
1̂Sj

(γ) = |Sj ∩ Hj+1| − |Sj ∩ (non-trivial coset of Hj+1)|, we get from the bound on the Fourier coefficient at γ

from above that Sj+1 = Sj ∩ Hj+1 has size

|Sj+1| ≥
(

1 − δ

2jσ

)
|Sj | ≥

(
1 − ε

2j+1

)
|Sj |,
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as δ = εσ/2. Hence, we have shown that if CayHj
(Sj) has a δ-sparse cut, then we can continue and find a

proper subgroup Hj+1 < Hj such that the set Sj+1 = S ∩ Hj+1 still satisfies (4).

Observe that the process must trivially halt after a finite number of steps, since there is no infinite chain of
subgroups Hj in the finite group Fn

2 . In fact, since each Sj has density at least 2j−1σ in Hj , the process
terminates after O(log 1/σ) steps. The final set Sj in this process then has the property that CayHj

(Sj) has no
δ-sparse cuts, and moreover it satisfies (5), so Hj and Sj = S ∩ Hj are the desired sets from the conclusion of
the lemma. □

4.2. The general case. Next, we prove the result in Theorem 1.5 in full generality, i.e. for a general finite
group. We emphasise again that this general result is needed to establish Theorem 1.4, but that it is not required
for our resolution Theorem 1.3 of the rearrangement problem over Fn

2 . We begin by defining the correct notion,
at least for our application, of a spectral gap for subsets of a general (not necessarily abelian) group. Note that
for a subset T of a nonabelian group G, its Fourier coefficients 1̂T (ρ) are matrices, rather than scalars as is the
case when G is abelian (such as G = Fn

2 in the previous subsection).

Definition 4.3. Let H be a finite possibly nonabelian group, and let T ⊂ H. We say that T has a β-spectral
gap if for every non-trivial irreducible representation ρ ∈ Ĥ and every unit vector v ∈ Vρ the following holds:

ℜ ⟨1̂T (ρ)v, v⟩Vρ ≤ (1 − β)|T |.

Remark 4.4. We note that this definition of the spectral gap is equivalent to the condition that all eigenvalues
of the matrices 1̂T (ρ) have real part at most (1 − β)|T |, for all non-trivial irreducible representations ρ. In
particular, recalling from Section 3 that the adjacency matrix of the directed graph CayH(T ) has precisely the
same eigenvalues as the matrices 1̂T (ρ) as ρ ranges over ∈ Ĥ, we further note T has a β-spectral gap if and
only if all non-trivial eigenvalues of the adjacency matrix of CayH(T ) have real part at most (1 − β)|T |.

Intuitively speaking, T has no (or only a small) spectral gap if there is some non-trivial irreducible representation
ρ and some vector v such that 1̂T (ρ)v ≈ |T |v. We also remark that 1̂T (ρ) =

∑
t∈T ρ(t) is a sum of |T | unitary

matrices, and hence we always have the trivial bound ℜ ⟨1̂T (ρ)v, v⟩Vρ
≤ ∥1̂T (ρ)v∥Vρ

≤ |T | for unit vectors v.
The following lemma generalises Lemma 4.2, showing that if a subset T of a finite group H has a spectral gap,
then CayH(T ) has no sparse cut. In particular, it immediately shows that Corollary 4.1 follows from Theorem
1.5.

Lemma 4.5. Let H be a finite group, and suppose that T ⊂ H has a β-spectral gap in the sense of Definition
4.3:

sup
ρ∈Ĥ:ρ̸=triv

sup
v∈Vρ

∥v∥Vρ =1

ℜ ⟨1̂T (ρ)v, v⟩Vρ ≤ (1 − β)|T |.

Then CayH(T ) has no βτ -sparse cuts, where τ = |T |/|H|.

Proof of Lemma 4.5. Let H = X1 ∪ X2 be a partition of H, so that our goal is to show that #{(x1, x2) ∈
X1 × X2 : x−1

1 x2 ∈ T} ⩾ βτ |X1||X2|. By the formula for the Fourier transform of a convolution and Fourier
inversion, we can write

#{(x1, x2) ∈ X1 × X2 : x−1
1 x2 ∈ T} = 1X1 ∗ 1T ∗ 1X−1

2
(idH) = 1

|H|
∑
ρ∈Ĥ

dρ Tr
(

1̂X1(ρ)1̂T (ρ)1̂X2(ρ)
T

)
,

where we used that all irreducible representations are unitary to note that 1̂X−1
2

(ρ) =
∑

x2∈X2
ρ(x2)−1 =∑

x2∈X2
ρ(x2)

T
= 1̂X2(ρ)

T
. Since the contribution from the trivial representation to the right hand side is

|X1||X2||T |/|H| = τ |X1||X2|, and by using that the trace is invariant under cyclic shifts, it suffices to show that

ℜ −1
|H|

∑
ρ∈Ĥ:ρ̸=triv

dρ Tr(1̂X2(ρ)
T

1̂X1(ρ)1̂T (ρ)) ≤ (1 − β)τ |X1||X2|,(6)

as plugging this in the first equation would show precisely that #{(x1, x2) ∈ X1×X2 : x−1
1 x2 ∈ T} ≥ βτ |X1||X2|.

Note that as X1, X2 partition H, we have that

1̂X1 + 1̂X2 = 1̂H =
{

|H|, if ρ = triv
0, otherwise.
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So 1̂X2(ρ) = −1̂X1(ρ) at all non-trivial representations ρ. Hence,

ℜ −1
|H|

∑
ρ∈Ĥ:ρ̸=triv

dρ Tr(1̂X2(ρ)
T

1̂X1(ρ)1̂T (ρ)) = 1
|H|

∑
ρ∈Ĥ:ρ ̸=triv

dρℜ Tr(1̂X1(ρ)
T

1̂X1(ρ)1̂T (ρ)).(7)

The matrix 1̂X1(ρ)
T

1̂X1(ρ) is conjugate symmetric (so self-adjoint with respect to ⟨·, ·⟩Vρ) and positive semi-
definite, so there is an orthonormal basis of vectors v1, v2, . . . , vdρ

of Vρ which are eigenvectors, and with real

non-negative eigenvalues λ1, λ2, . . . , λdρ
⩾ 0 whose sum is equal to Tr(1̂X1(ρ)1̂X1(ρ)

T
). By noting that for any

linear map A : Vρ → Vρ and any orthonormal basis wj we have that Tr(A) =
∑

j⟨Awj , wj⟩Vρ
, we get for any

non-trivial irreducible representation ρ that

ℜ Tr(1̂X1(ρ)
T

1̂X1(ρ)1̂T (ρ)) = ℜ
dρ∑

j=1
⟨1̂X1(ρ)

T
1̂X1(ρ)1̂T (ρ)vj , vj⟩Vρ

= ℜ
dρ∑

j=1
⟨1̂T (ρ)vj , 1̂X1(ρ)

T
1̂X1(ρ)vj⟩Vρ

=
dρ∑

j=1
λjℜ ⟨1̂T (ρ)vj , vj⟩Vρ

,

where we used that 1̂X1(ρ)
T

1̂X1(ρ) is self-adjoint in the second line. The spectral gap assumption states that
for any unit vector v we have an upper bound ℜ ⟨1̂T (ρ)v, v⟩Vρ

⩽ (1 − β)|T |. Using this spectral gap bound in
the equation above, we get the following upper bound for every non-trivial irreducible representation ρ:

ℜ Tr(1X1(ρ)
T

1̂X1(ρ)1̂T (ρ)) ⩽ (1 − β)|T |
dρ∑

j=1
λj

= (1 − β)|T | Tr(1̂X1(ρ)
T

1̂X1(ρ)),

as Tr(1̂X1(ρ)
T

1̂X1(ρ)) =
∑dρ

j=1 λj . Finally, we can plug these trace bounds in the right hand side of (7) and
bound this by

(1 − β)|T |
|H|

∑
ρ̸=0

dρ Tr(1̂X1(ρ)
T

1̂X1(ρ)) = (1 − β)|T |
(

|X1| − |X1|2

|H|

)
= (1 − β)τ |X1||X2|

where we used Parseval to calculate 1
|H|

∑
ρ̸=triv dρ Tr(1̂X1(γ)

T
1̂X1(ρ)) = |X1| − 1̂X1(triv)2/|H| = |X1| −

|X1|2/|H| = |X1||X2|/|H| as |X2| = |H| − |X1| since X1, X2 partition H. This establishes (6) and hence
completes the proof of the lemma. □

Recall that over Fn
2 , a lemma of the type that we just proved could immediately be combined with a density

increment argument to conclude Lemma 2.8, basically because a subset T of Fn
2 having no spectral gap is

trivially equivalent to most of T being contained in a proper subgroup. Such a statement is more delicate in
general groups, and in fact only true in a weaker sense. The next auxiliary lemma is a result of this type that
is true in general groups. It states that if a set T ⊂ G has no β-spectral gap for some β which is sufficiently
small in terms of the density of T in G, then one can again conclude that most of T lies in a proper subgroup.

Lemma 4.6. Let H be a finite group, and suppose that T ⊂ H is a subset for which there exists a non-trivial
irreducible representation ρ and a unit vector v ∈ Vρ such that

ℜ ⟨1̂T (ρ)v, v⟩ ⩾ (1 − β)|T |.

Let τ = |T |/|H| and assume that β ≤ τ2/1000 (say). Then there is a proper subgroup H ′ of H which contains
at least |T ∩ H ′| ≥ (1 − 50β/τ2)|T | of the elements of T .

Proof. Suppose that there exists a non-trivial irreducible representation ρ and a unit vector v ∈ Vρ such that
ℜ ⟨1̂T (ρ)v, v⟩Vρ ⩾ (1 − β)|T |. Throughout this proof, ρ will be fixed and hence we will simply write ∥·∥ and ⟨·, ·⟩
for ∥·∥Vρ

, ⟨·, ·⟩Vρ
. We will consider the Bohr sets

B(η) := {h ∈ H : ∥ρ(h)v − v∥ ≤ η}
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for η ∈ [0, 2] (these sets also depend on v, but we consider v to be fixed in this proof). Recall that ℜ ⟨ρ(t)v, v⟩ ⩽ 1
for any t ∈ T , as ρ(t) is unitary. From the assumption that ℜ ⟨1̂T (ρ)v, v⟩ ≥ (1 − β)|T | we thus deduce that the
set

Tm := {t ∈ T : ℜ ⟨ρ(t)v, v⟩ ≥ 1 − mβ}
satisfies

(1 − β)|T | ≤ ℜ ⟨1̂T (ρ)v, v⟩ =
∑
t∈T

ℜ ⟨ρ(t)v, v⟩ ≤ |Tm| + (1 − mβ)|T \ Tm| = |T | − mβ|T \ Tm|

and hence has size |Tm| ≥ (1 − 1/m)|T |. Tm is not (necessarily) a Bohr set, but we show that it is efficiently
contained in a Bohr set. Since v and hence ρ(t)v are unit vectors, we have for t ∈ Tm, i.e. for t satisfying
ℜ⟨ρ(t)v, v⟩ ⩾ (1 − mβ), that ∥ρ(t)v − v∥2 = 2 − 2ℜ⟨ρ(t)v, v⟩ ⩽ 2mβ. We conclude that the set

T (m) := T ∩ B(
√

2mβ) = {t ∈ T : ∥ρ(t)v − v∥ ⩽
√

2mβ}

contains Tm and thus has size |T (m)| ≥ (1 − 1/m)|T |. In other words, we have shown that T (m) contains ‘most’
of T and is contained in a Bohr set B(

√
2mβ) of rather short width.

We make the following basic observation about the Bohr sets B(η): if x ∈ B(η) then xB(η′) ⊂ B(η + η′). The
proof of this is simply observing that if ∥ρ(x)v − v∥ ⩽ η and ∥ρ(y)v − v∥ ⩽ η′, then

∥ρ(xy)v − v∥ =∥ρ(x)ρ(y)v − v∥
= ∥ρ(x)ρ(y)v − ρ(x)v + ρ(x)v − v∥
⩽ ∥ρ(y)v − v∥ + ∥ρ(x)v − v∥ ⩽ η + η′,

by the triangle inequality and as ρ(x) is unitary.

We now choose m = τ2/(50β) and we will write η := τ/5, so we have shown that T (m) := T ∩ B(
√

2mβ) =
T ∩ B(η) contains at least (1 − 1/m)|T | ⩾ (1 − 50β/τ2)|T | elements of T . In particular, as we are assuming
that β ≤ τ2/1000, we certainly have that |T (m)| ⩾ 0.9|T |. Note also that T (m) satisfies the size requirement
from the conclusion of the lemma, so to complete the proof of this lemma, it only remains to show that T (m)

is contained in a proper subgroup of H. It thus suffices to show that B(η) is contained in a proper subgroup,
and to do this we will establish the following claim.

Claim 4.7. There exists some integer k < 4/τ such that B(kη) \ B((k − 1)η) = ∅, where η = τ/5.

First let us see how, assuming this claim, we can easily deduce the desired conclusion that B(τ/5) = B(η)
is contained in a proper subgroup of H. Indeed, we have the basic fact that xB((k − 1)η) ⊂ B(kη) for any
x ∈ B(η), and hence the claim that B(kη) \ B((k − 1)η) = ∅ implies that B(η) · X ⊂ X where X = B((k − 1)η).
Iterating this, we see that B(η)j · X ⊂ X for all j and as X = B((k − 1)η) clearly contains the identity element,
X must therefore contain the subgroup generated by B(η). Finally, to see that this subgroup is proper we may
simply note that X is not the whole of H since

X = B((k − 1)η) ⊂ B(kη) ⊂ B((4/τ)τ/5) ⊂ B(4/5) = {h ∈ H : ∥ρ(h)v − v∥ ⩽ 4/5}

cannot contain the whole of H, by recalling for example the orthogonality relation
∑

h∈H ρ(h) = 0 as ρ is a
non-trivial irreducible representation, which shows that

∑
h∈H ρ(h)v = 0.

It only remains to prove the claim. Suppose for a contradiction that it is not true, then for each integer j ⩽ 4/τ

we can find an element hj ∈ B(jη) \ B((j − 1)η). Consider the elements h1, h4, . . . , h3r+1 with indices which
are 1 (mod 3) up to 4/τ . We claim that the sets h1B(η), h4B(η), . . . , h3r+1B(η) are pairwise disjoint subsets of
H. Indeed, pick x ∈ h3i+1B(η) and y ∈ h3j+1B(η) for some i > j. So x = h3i+1x0 for some x0 ∈ B(η). Then
we calculate

∥ρ(x)v − ρ(y)v∥ ⩾ ∥ρ(x)v − v∥ − ∥ρ(y)v − v∥
≥ ∥(ρ(h3i+1)v − v) + ρ(h3i+1)(ρ(x0)v − v)∥ − (3j + 2)η,

where we used that y ∈ h3j+1B(η) ⊂ B((3j+2)η). Hence, using that ρ(h3i+1) is unitary (so distance preserving)
and that x0 ∈ B(η), we get

∥ρ(x)v − ρ(y)v∥ ⩾ ∥ρ(h3i+1)v − v∥ − ∥ρ(x0)v − v∥ − (3j + 2)η
> 3iη − (3j + 3)η

where the strictness in the final inequality holds as h3i+1 ∈ B((3i + 1)η) \ B(3iη). As i > j this implies that
x ̸= y so that indeed the sets h3i+1B(η), h3j+1B(η) are disjoint as we claimed. Finally, we note that this gives



16 ON GRAHAM’S REARRANGEMENT CONJECTURE OVER Fn
2

us the required contradiction since we showed above that T (m) ⊂ B(τ/5) = B(η) and that T (m) contains at
least (1 − 50β/τ2)|T | ≥ 0.9|T | = 0.9τ |H| elements, by the assumption of the lemma that β ≤ τ2/1000. Hence
the sets h3j+1B(τ/5) for 1 ⩽ 3j + 1 ⩽ 4/τ would give us 4/(3τ) disjoints sets of size at least 0.9τ |H| inside H.
This is of course absurd, and we deduce that there must be some j ⩽ 4/τ for which B(jη) \ B((j − 1)η) = ∅,
proving the claim. □

We can now prove Theorem 1.5 by repeatedly applying Lemma 4.6.

Proof. Let ε ∈ (0, 1/2) be given. Let S ⊂ G and we define σ = |S|/|G| and η = εσ2/1000. We proceed by
a density increment argument, starting with S0 = S and H0 = G. We will iteratively construct subgroups
Hj < Hj−1 and sets Sj := Sj−1 ∩ Hj satisfying for all j that:

(8) |Sj+1| ≥ (1 − ε

2j+1 )|Sj |.

Suppose now that we have constructed Hj < Hj−1 < · · · < H0 and Si = S ∩ Hi, for i ≤ j, satisfying (8). Then
we certainly have

(9) |Sj | ≥ |S|
∞∏

i=0
(1 − ε

2i+1 ) ≥ (1 − ε)|S|.

So item (1) is satisfied for all Sj . Hence, either item (2) is also satisfied in which case the desired conclusion
from Theorem 1.5 holds, or the adjacency matrix of CayHj

(Sj) has a non-trivial eigenvalue with real part at
least (1 − η)|Sj |, where η = εσ2/1000. Following the remark after Definition 4.3, this is equivalent to Sj ⊂ Hj

having no η-spectral gap meaning that there are a non-trivial irreducible representation ρ ∈ Ĥj and a unit
vector v ∈ Vρ satisfying

ℜ ⟨1̂Sj (ρ)v, v⟩Vρ ⩾ (1 − η) |Sj |.
By (9), we have that Sj has size at least (1 − ε)|S| ≥ |S|/2 as ε < 1/2, and hence Sj has density at least
2j−1σ in |Hj | because Hj is a subgroup of H0 of index at least 2j (note that at each stage i we find Hi which
is a proper subgroup of Hi−1). In particular, as η = εσ2/1000, we see that η ≤ (|Sj |/|Hj |)2/1000 so that the
assumption of Lemma 4.6 is satisfied. This lemma concludes that there is a proper subgroup Hj+1 < Hj such
that Sj+1 = S ∩ Hj+1 has size at least

|Sj+1| ≥
(

1 − η · 50
(|Sj |/|Hj |)2

)
|Sj | ≥

(
1 − η · 50

4j−1σ2

)
|Sj | ≥

(
1 − ε

2j+1

)
|Sj |,

as η = εσ2/1000. Hence, we have shown that if CayHj
(Sj) does not satisfy condition (2), then we can continue

and find a proper subgroup Hj+1 < Hj such that Sj+1 = S ∩ Hj+1 still satisfies (8).

Observe that the process must trivially halt after a finite number of steps, since there is no infinite chain of
subgroups Hj in the finite group G. The final set Sj in this process then has the property that CayHj

(Sj)
satisfies condition (2), and moreover it satisfies (9), so Hj and Sj = S ∩ Hj are the desired sets from the
conclusion of Theorem 1.5. □

5. A flexible 99% result

The main result of this section is Lemma 5.7, a flexible asymptotic statement about finding rainbow paths in
dense robust expander digraphs. This Lemma 5.7 will play a crucial role at several stages in the remainder of
the paper.

As we mentioned in the introduction, it is shown in [5] that if CayS(G) is a robust expander, then it contains
a rainbow path of length (1 − o(1))|S|. This result is insufficient for our applications because we will need to
obtain the same conclusion even if we restrict to random vertex subsets of CayS(G) and forbid a small number
of colours from S. Due to this additional flexibility requirement, our proof of Lemma 5.7 diverges significantly
from the approach in [5].

5.1. Tools. In this section we introduce some notation and previous results.

We start with the following lemma ([36, Lemma 3.8]), which combines Thomason’s jumbledness criterion with
the Rödl nibble. The power of the lemma is that the set C ′ can be chosen completely arbitrarily after the
random sets A′, B′ are revealed. We say that a tripartite 3-uniform hypergraph is (γ, p, n)-typical if each partite
set has (1 ± γ)n vertices; each vertex has degree (1 ± γ)pn; and for each pair of vertices u, v in the same partite
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set, there are (1 ± γ)p2n vertices w in each other partite set such that (u, w, x), (v, w, y) are edges for some x, y

in the third partite set.

Lemma 5.1 ([36], Lemma 3.8). Let H = (A, B, C) be a (0, 1, n)-typical tripartite linear hypergraph, and let
p ≥ n−1/600. Let A′ ⊆ A and B′ ⊆ B be (not necessarily independent) p-random subsets. Then with probability
at least 1 − n−2, the following holds: For any C ′ ⊆ C of size (1 ± n−0.2)pn, there is a matching covering all but
2n1−1/500 vertices in A′ ∪ B′ ∪ C ′.

We will always use the above lemma in the form of the following corollary, which picks out the special case of
the multiplication hypergraph of a group G (which is always (0, 1, n)-typical).

Corollary 5.2. Let G be a group on n elements, and let p ≥ n−1/600. Let A, B ⊆ G be (not necessarily
independent) disjoint p-random. Then with probability at least 1 − n−2, the following holds: For any C ⊆ G of
size (1 ± n−0.2)pn, there is a rainbow matching in CayG(C) from A to B covering all but 2n1−1/500 vertices in
A ∪ B and using all but at most 2n1−1/500 colours from C.

We next introduce the notion of robust expansion (following [33]). As we will see shortly, robust expansion is
implied3 by the absence of sparse cuts. We will use robust expansion only through our invocation of Lemma 5.5
below (from [5]); the notion will not otherwise figure in the paper.

Definition 5.3. Let G be a directed graph on n vertices. For U ⊆ V (G) and ν > 0, the ν-robust out-
neighbourhood of U in G is the set

RN+
ν,G(U) := {v ∈ V (G) : |N−(v) ∩ U | ≥ νn}.

We say that G is a robust (ν, τ)-out-expander if every U ⊆ V (G) with τn ≤ |U | ≤ (1 − τ)n satisfies

|RN+
ν,G(U) \ U | ≥ νn.

Similarly, the ν-robust in-neighbourhood of U in G is the set

RN−
ν,G(U) := {v ∈ V (G) : |N+(v) ∩ U | ≥ νn},

and we say that G is a robust (ν, τ)-in-expander if every U ⊆ V (G) with τn ≤ |U | ≤ (1 − τ)n satisfies

|RN−
ν,G(U) \ U | ≥ νn.

We say that an undirected graph G is a robust (ν, τ)-expander if the directed graph obtained by replacing each
edge with two directed edges (one in each direction) is a robust (ν, τ)-out-expander (or, equivalently, a robust
(ν, τ)-in-expander).

The following elementary proposition shows that a graph with no sparse cuts, as in the definition following
Theorem 1.5, is a robust expander. After quoting Lemma 5.5 from [5], we will work with only the no-sparse-
cuts property in the rest of this paper.

Proposition 5.4. Let 0 ≤ τ ≤ 3/4 and 0 ≤ ζ ≤ 1. Then any digraph H with no ζ-sparse cuts is a (ζτ/8, τ)-
robust-out-expander.

Proof. Set n := |H|. Let U be any subset of V (H) of size τn ≤ |U | ≤ (1 − τ)n Since U ⊔ (H \ U) is not a
ζ-sparse cut, there must be at least ζτ(1 − τ)n2 edges from U to H \ U . The ζτ/8-non-robust neighbourhood
of U can pick up at most (ζτ/8)n2 of these edges, so the ζτ/8-robust out-neighbourhood of U has size at least
(ζτ(1 − τ) − ζτ/8)n ≥ (ζτ/8)n. □

In a sufficiently dense robust expander, one can find short paths connecting any two given vertices, and one
can moreover guarantee that all vertices and edge-colours in the connecting path come from specified random
subsets. The following lemma makes this precise (here we we state only one of the several properties in the
lemma from [5]). The proof consists of elementary applications of Chernoff’s bound and an application of the
definition of robust expansion.

Lemma 5.5 ([5], Lemma 4.3). Let ν, τ, p ≤ 1 be positive constants. Let G be a properly edge-coloured directed
graph on n vertices, where p3ν2n ≥ 144 log n. Suppose that G is a robust (ν, τ)-out-expander, with δ±(G) ≥
(ν + τ)n. Let V0 ⊆ V (G), C0 ⊆ C(G) be independent p-random subsets. Then with probability at least 1 − 5/n,
the following holds:

3The two notions are in fact equivalent up to a constant factor loss in parameters.
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For any distinct vertices u, v ∈ V (G), and for any vertex subset V1 ⊆ V0 and colour subset C1 ⊆ C0 with
|V1|, |C1| ≤ (p3ν/100)n, there exists a rainbow directed path of length at most ν−1 + 1 from u to v in G whose
internal vertices lie in V0 \ V1 and whose colours lie in C0 \ C1.

Iterative applications of this lemma yield the following corollary.

Corollary 5.6. Let 0 < ν, τ, p ≤ 1. Let G be a properly edge-coloured directed graph on n vertices, where
p3ν2n ≥ 144 log n. Suppose that G is a robust (ν, τ)-out-expander with δ±(G) ≥ (ν+τ)n. Let V0 ⊆ V, C0 ⊆ C(G)
be independent p-random subsets. Then with probability at least 1 − 5/n, the following holds:

For any collection (vi, wi)i∈[k] of k ≤ p3ν2

300 n disjoint pairs of vertices, we can find a rainbow collection of vertex-
disjoint paths P1, . . . , Pk (meaning that the union of the Pi’s is rainbow), where each Pi goes from vi to wi, and
the vertices of the Pi’s lie in V0 and use colours from C0.

Proof. With probability 1 − 5/n, the conclusion of Lemma 5.5 holds for V0, C0. We construct the paths Pi one
at a time. Suppose we have already constructed P1, . . . , Pℓ for some ℓ < k. Let V1 denote the union of the
internal vertices in P1, . . . , Pℓ, and let C1 denote the set of colours in P1, . . . , Pℓ. Notice that

|C1|, |V1| ≤ (ν−1 + 1)ℓ ≤ (ν−1 + 1)k ≤ (p3ν/100)n.

Then Lemma 5.5 with this choice of V1, C1 produces the desired path Pℓ+1 from vℓ+1 to wℓ+1. □

5.2. The 99% lemma. We have nearly arrived at the main lemma, which establishes a very flexible asymptotic
result in the dense setting. This lemma allows us to find a rainbow path of length (1 − o(1))|S| inside a (large)
random vertex subset of CayFn

2
(S) with high probability. We can in fact guarantee a bit more: For SF contained

in a random S′ ⊆ S, we want to find a rainbow path in CayFn
2
(S \ SF ) of length (1 − o(1))|S \ SF |; our lemma

guarantees that with high probability, the restriction of CayFn
2
(S \ SF ) to our random vertex set contains such

a path for all eligible choices of SF simultaneously. This flexibility will be useful later in the argument, for
instance when we want our 99% path to avoid the absorbing structure that we set aside initially.

The statement of our lemma involves many different parameters, objects, and quantifiers. To help the reader
get their bearing, we gloss some of the characters involved. The main thrust of the lemma is that a nicely
expanding Cayley graph with a generating set S of size at least n1−1/8500 has a rainbow path which uses all but
a few colours from S. For our later applications, we will need to be able to impose further restrictions on this
long rainbow path:

• If M is a randomly sampled vertex subset, then with high probability for any two vertices u, v we can
require the long rainbow path to start at u, end at v, and have all of its internal vertices lying in M .

• We require the path to avoid a small (adversarially-chosen) deterministic vertex set J .
• We also require the colour set of the path to avoid an adversarially-chosen subset SF of a randomly

sampled subsets S′ ⊆ S.
• Our path should use all but a small fraction of the colours in S \ SF .

We now give the formal statement of our flexible 99% lemma.

Lemma 5.7. Let G be an N -element group. Let 8N−1/8500 ≤ ζ, µ, ε, q ≤ 1.

• Let S ⊆ G have |S| ≥ εN , and suppose that CayG(S) has no ζ-sparse cuts.
• Let J ⊆ G have |J | ≤ 2−28q3µ3ε2ζ2N .
• Let M ⊆ G be a q-random subset of G, with q ≥ (1 + µ)|S|/N.

• Let S′ ⊆ S be a q′-random subset of S, with q′ ≤ 1 − µq/4.

Then with probability at least 1 − 7/N , the following holds for every choice of SF ⊆ S′ and every pair of distinct
vertices u, v ∈ G: There exists a rainbow path from u to v in CayG(S \SF ), using all but µqN colours of S \SF ,
such that all of the internal vertices of the path lie in M \ J .

Proof. Let H := CayG(S) and set τ := 3
4 ε. Due to Proposition 5.4, the no ζ-sparse cuts hypothesis implies that

H is a (ν, τ)-robust out-expander for ν := ζτ/8.

Since |J | ≤ ζε/32 · N ≤ ζτ/16 · N , the graph H \ J is still a (ν/2, τ)-robust out-expander with minimum degree
at least |S| − |J | ≥ 7

8 εN . Note that 7
8 ε ≥ ζτ/16 + τ , so H \ J satisfies the minimum-degree requirement of

Corollary 5.6.
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Let t := 228

q2µ3ζ2ε2 . We now randomly partition G (the vertex set of H) into sets R, M1, . . . , Mt and a junk set
by placing each vertex into R with probability p̃ := µq/4, into each Mi with probability p := (q − p̃)/t, and into
the junk set otherwise (independently for each vertex). Hence R ⊆ G is a p̃-random subset, each Mi ⊆ G is a
p-random subset, and

M := R ∪ M1 ∪ . . . ∪ Mt ⊆ G

is a q-random subset of G; of course the sets R, M1, . . . , Mt are all disjoint. (We discard the junk set.) Our
choice of t guarantees that

p ≥ q

2t
≥ q3µ3ζ2ε2/229 ≥ N−1/600.

We can now describe the plan for the proof, depicted schematically in Figure 5. We will use Corollary 5.2 to
obtain an almost-complete rainbow matching between Mi and Mi+1 for each i (using a fresh set of colours for
each new pair); this produces a large rainbow path forest with few components. We will then use Corollary 5.6
to find rainbow paths in R (depicted in gray in Figure 5) linking together the components of the path forest;
this step will use colours from a reserved random set C ′

R.

M1 M2 M3 M4 R

Figure 5. An illustration of the argument in Lemma 5.7.

In order to carry out this strategy, we need to upper-bound the probability of failure in our applications of
Corollaries 5.2 and 5.6 to various random sets. Let us start with the latter. Let CR ⊆ S be a p̃

1−q′ -random
subset, and define C ′

R := CR \ S′, which is a p̃-random subset of S. Now Corollary 5.6 applied to H \ J tells us
that with probability at least 1 − 5/N , the following property holds: We can link any collection of up to

(10) p̃3(ν/2)2

300 · (N − |J |) ≥ p̃3ζ2ε2

219 · N

disjoint pairs of vertices with a rainbow path forest such that the paths use colours only from C ′
R and all of

their internal vertices lie in R\J . Note that the final hypothesis of Corollary 5.6 is satisfied since the right-hand
side of (10) is much larger than log N .

The second desirable property is that for each 1 ≤ i ≤ t − 1 and every subset C ⊆ G of pN colours, the graph
CayG(C) contains a rainbow matching between Mi and Mi+1 covering all but at most 2N1−1/500 vertices of
Mi ∪ Mi+1 and using all but at most 2N1−1/500 colours of C. This happens for each fixed i with probability
at least 1 − 1/N2 by Corollary 5.2 applied to the whole of CayG(G) (which is (0, 1, n)-typical) since Mi, Mi+1
are both p-random subsets with p ≥ N−1/600. Notice that independence of M1, Mi+1 is not required for the
application of Corollary 5.2.

By a union bound we can ensure that with probability at least 1 − 7/N , the properties from the previous two
paragraphs simultaneously hold, and we have |C ′

R| ≤ 2p̃N and |Mi| ≤ 2pN for all i (using Chernoff bounds).
We will now establish the conclusion of the lemma under the assumption that this is the case.

Using the second property, we can find a rainbow matching between M1 and M2 using at least pN − 2N1−1/500

colours from S \ (SF ∪ C ′
R). We then remove these newly-used colours from consideration and use the second

property to obtain a rainbow matching between M2 and M3 using at least pN − 2N1−1/500 colours, and so on.
We continue until there are fewer than pN unused colours of S \ (SF ∪ C ′

R) remaining; this happens after at
most t − 1 steps because otherwise we would have used up

(t − 1)(pN − 2N1−1/500) ≥ tpN − pN − 2tN1−1/500 = N(q − p̃ − p − 2tN−1/500) > (1 − µ/2)qN ≥ |S|

colours, which is impossible. (The last inequality uses the hypothesis on the size of q.)
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Consider the union of the matchings constructed in the previous paragraph, and throw out all edges incident
to J ∪ {u, v} The remainder is a rainbow (directed) path forest using all but at most

pN + |C ′
R| + |J | + 2 ≤ pN + 2p̃N + µqN/4 + 2 ≤ µqN

colours of S \ SF . Since each matching left at most 2N1−1/500 uncovered vertices on each side of (Mi, Mi+1),
the total number of degree-1 vertices in this path forest is at most

4pN + t · 2N1−1/500 + 2|J | + 4 ≤ 4q

t
· N + 229N

q2µ3ζ2ε2 · N1/500 + q3µ3ζ2ε2

227 · N + 4 ≤ q3µ3ζ2ε2

225 · N = p̃3ζ2ε2

219 · N.

Fix an ordering P1, . . . , Pm of the paths in our path forest, where m ≤ p̃3ζ2ε2

219 · N . By the linking-up property
guaranteed above, we can find vertex-disjoint paths in R \ J using colours in C ′

r that connect u to the initial
vertex of P1, connect the final vertex of Pi to the initial vertex of Pi+1 for each 1 ≤ i ≤ m − 1, and connect the
final vertex of Pm to v. Putting everything together produces the desired long rainbow path. □

6. The absorption (99% → 100%) lemmas

In this section we prove several lemmas which will allow us to run the absorption argument. We start with the
simplest one, in part to illustrate an argument which, in a somewhat more complicated form, will appear in
several later lemmas.

Lemma 6.1. Let 0 < p ≤ 1, and let G be a finite group. Suppose J ⊆ E ⊆ G \ {id} satisfy

|E|p2 ≥ max(40|J |, 96 log |G|).

Let A be a p-random subset of G. Then with high probability, we can find, for each vertex u ∈ G, a rainbow
path in CayG(E) that starts at u, has all other vertices in A, and contains all of the colours in J .

Proof. Set N := |G|. For each vertex v ∈ G and colour j ∈ J , let Ev,j be the event that there are at least 5|J |
vertex-disjoint paths of the form

v, vg, vgj

with g ∈ E \ {j} and vg, vgj ∈ A. We will show that these events are very likely. Fix some v ∈ G, j ∈ J . There
are at least |E| − 2 candidate paths v, vg, vgj in CayG(E) (since we may have to exclude g = j−1 to guarantee
vgj ̸= v), and each such path intersects at most two other paths (since vg = vg′j implies that g = g′j). Thus
we can greedily find a collection at least (|E| − 2)/3 disjoint such paths. Each path in this collection survives
in A with probability p2, and these events are independent. Hence the number of surviving paths dominates
Bin(|E|/4, p2), and a Chernoff bound tells us that at least |E|p2/8 > 5|J | of them survive with probability at
least 1 − exp(−|E|p2/32) ≥ 1 − 1/N3. Thus P(Ev,j) ≥ 1 − 1/N3. By a union bound, we conclude that with
probability at least 1 − 1/N all of the events Ev,j simultaneously occur.

Suppose we are in such an outcome. We can find our desired path by starting at u and repeatedly adding a
length-2 path containing an arbitrary hitherto-unused element of J . Indeed, since we have at least 5|J | candidate
extensions at each step, we can ensure that the colour g is hitherto unused (there are at most 2|J | − 2 colours
already used) and that the two new vertices do not intersect the part of the path (of length at most 2|J | − 2)
that we have already built. □

In the remainder of this section, we shall work specifically over Fn
2 since our absorbing structures for general

groups have a very different form.

6.1. Building an absorbing path. In this section we describe our absorbing path and show how to find it
robustly. By an ordered subset of Fn

2 we mean a subset F ⊆ Fn
2 together with an ordering on its elements. We

write fi for the i-th element of F , and we write ⟨F ⟩ for the subspace generated by F .

Definition 6.2. Let S ⊆ Fn
2 . An ordered subset F ⊆ S is a gadget in S if |F | ≤ 6, the elements of F sum to

0, and no proper subset of F is 0-sum. A family F of gadgets in S is flexible if the following all hold:

F1 The elements of F are pairwise disjoint.
F2 The sets of partial sums {f1, f1 + f2, . . . , f1 + . . . + f|F |−1} for F ∈ F are all disjoint.
F3 For any distinct F1, F2 ∈ F , we have |⟨F1⟩ ∩ ⟨F2⟩| ≤ 2.
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Equivalently, F is a gadget if and only |F | ≤ 6 and starting at any vertex v and following the edges of the
colours of F (in order) produces a rainbow cycle. Removing the last edge of such a rainbow cycle produces a
rainbow path starting from v associated to the gadget F . If F is a flexible family of gadgets, then for each
vertex v, the rainbow paths from v associated to the gadgets in F are vertex-disjoint except for v. (This fact
uses only F1 and F2. The role of F3 will become clear later; at a high level, it ensures that different gadgets
do not interact too much.) The union of these paths is a rainbow tree which we will refer to as an out-spider of
F . An in-spider of F is an out-spider of the gadget obtained from F by reversing the ordering of each gadget.

For example, if v is a vertex and F = {f1, f2, f3, f4} is a gadget in a flexible family F , then the path v, v+f1, v+
f1 +f2, v+f1 +f2 +f3 forms a leg of the out-spider of F and v, v+f4, v+f4 +f3, v+f4 +f3 +f2 forms a leg of an
in-spider of F . Notice that an out-spider and an in-spider with the same starting vertex v have the same vertex
set, since for any gadget F we have {f1, f1+f2, . . . , f1+. . .+f|F |−1} = {f2+. . .+f|F |, f3+f4+. . .+f|F |, . . . , f|F |}
due to the 0-sum assumption. See Figure 6 for an illustration.

v

v + f1 v + f1 + f2 v + f1 + f2 + f3v + f4v + f3 + f4v + f2 + f3 + f4

Figure 6. An out-spider and an in-spider of a flexible family F . The figure is misleading
in representing the out-spider and in-spider on different vertex sets. The bottom two legs
correspond to the gadget F = {f1, f2, f3, f4}.

Our absorbing structure will allow us to choose, for each gadget F ∈ F , either to leave all of the colours of F

in the absorbing structure or to free them all up for use embedding other colours elsewhere. In an idealised
scenario (which provides good intuition), each F would consist of a single colour, and then

⋃
F would represent

a set of flexible colours which we may absorb into our absorbing structure at the very end of the argument if
they ended up being unneeded elsewhere. Since of course there are no non-trivial 0-sum single elements, we
must package our flexible colours in in short tuples (of size at most six), as encoded by our gadgets.

We can find a large flexible family in any reasonably large subset of Fn
2 , essentially by the pigeonhole principle.

Lemma 6.3. Let 0 < ε ≤ 1. If E ⊆ Fn
2 has size |E| ≥ εN1/2, where N := 2n, then E contains a flexible family

with at least
⌊
ε2|E|/249⌋

gadgets.

Proof. We may assume that |E| ≥ 249/ε2, as otherwise the statement is trivial. Let us take F to be a maximal
flexible family of gadgets in E. Towards a contradiction, let us assume that |F| < ε2|E|/249. Define the set
B :=

⋃
F ∈F ⟨F ⟩ of blocked vertices. Note that each F ∈ F is a 0-sum set of size at most 6, so |⟨F ⟩| ≤ 32 and

hence |B| ≤ 32|F| ≤ ε2|E|/32.

Now consider triples {e1, e2, e3} ⊆ E of linearly independent elements such that ⟨e1, e2, e3⟩∩ B = ∅. We have at
least (1−ε2/32)|E|−1 ≥ 2−1/3|E| such choices for e1 ̸= 0 (ensuring e1 /∈ B), then (1−ε2/16)|E|−2 ≥ 2−1/3|E|
choices for e2 /∈ ⟨e1⟩ (ensuring e2, e1 +e2 /∈ B) and (1−ε2/8)|E|−4 ≥ 2−1/3|E| choices for e3 /∈ ⟨e1, e2⟩ (ensuring
the remaining four subsums are not in B). Since we counted each triple 6 times, there are at least |E|3/12 many
such triples. Fix an ordering of the elements of Fn

2 , and let si denote the number of triples summing to the i-th
element of Fn

2 . Then s1+. . .+sN ≥ |E|3/12, and (by convexity) there are at least
(

s1
2

)
+. . .+

(
sN

2
)

≥ |E|6/(512N)
6-tuples (e1, e2, e3, e4, e5, e6) such that e1 + e2 + e3 = e4 + e5 + e6 and ⟨e1, e2, e3⟩, ⟨e4, e5, e6⟩ are disjoint from
B; let us call such 6-tuples good.

Since dim(⟨e1, e2, e3, e4, e5, e6⟩ ≤ 5, there are at most 326 good 6-tuples with a given span. Thus we can find a
subcollection of at least |E|6/(239N) good 6-tuples spanning pairwise distinct subspaces. We will be done if we
can show that some such good 6-tuple F ′ = (e1, e2, e3, e4, e5, e6) satisfies |⟨F ′⟩ ∩ ⟨F ⟩| ≤ 2 for all F ∈ F , since
then we can add a suitable 0-sum subset of F ′ to F , contradicting the maximality of F .
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There are at most 322 · |F| pairs of distinct nonzero elements (a, b) such that a, b ∈ ⟨F ⟩ for some F ∈ F . Each
such pair (a, b) is contained in at most 1 + |E| +

(|E|
2

)
+

(|E|
3

)
≤ |E|3 subspaces of the form ⟨F ′⟩ as F ′ ranges

over our subcollection of good 6-tuples (since any such subspace can be obtained as the span of a, b and at most
3 elements of E). When we range over the pairs (a, b), there are at most

322 · |F| · |E|3 < ε2|E|4/239 ≤ |E|6/(239N)

such subspaces in total. In particular, we can choose a good tuple F ′ = (e1, e2, e3, e4, e5, e6) for which there
are no such pairs (a, b); this means that |⟨e1, e2, e3, e4, e5, e6⟩ ∩ ⟨F ⟩| ≤ 2 for every F ∈ F . Now let F ′′ be a
minimal 0-sum subset of {e1, e2, e3, e4, e5, e6} and fix an ordering of F ′′ which first traverses the elements from
{e1, e2, e3} and only afterwards traverses the elements from {e4, e5, e6}; then F ′′ is a new gadget which can be
added to F , giving the desired contradiction.

Let us check more explicitly that F ∪ {F ′′} is a flexible family. F1 holds as we chose each ei /∈
⋃

F ∈F ⟨F ⟩. We
chose F ′ to satisfy |⟨F ′⟩ ∩ ⟨F ⟩| ≤ 2 for all F ∈ F ; a fortiori the same holds with F ′ replaced by F ′′, so F3
holds. It remains to verify F2. Write F ′′ = {ei1 , . . . , eit

}. Each partial sum ei1 + · · · + eir
= eir+1 + · · · + eit

is in either ⟨e1, e2, e3⟩ or ⟨e4, e5, e6⟩ according to whether or not ir ≤ 3; either way, the sum is by construction
not in B. □

To gain intuition on a first read-through, the reader may wish to think of the properties F1–F3 in the definition
of a flexible family as saying that ⟨F ⟩ ∩ ⟨F ′⟩ = {0} for distinct F, F ′ ∈ F . This stronger property implies all of
F1–F3. There is, however, one instance where we wish to find such a family but we will not be able to ensure
this stronger zero-intersection property.

The following easy proposition allows us to obtain a short rainbow path from a gadget and an arbitrary element
not in the gadget. This will come in handy in several places.

Proposition 6.4. Let F be a gadget, and let x /∈ F be any nonzero element. Then we can order the elements of
F in such a way that x is not equal to any contiguous subsum of F . In particular, inserting x into this ordering
of F in any position except for the first or the last produces a valid ordering of F ∪ {x}.

Proof. If x /∈ ⟨F ⟩, then any ordering of F will do, so suppose that x ∈ ⟨F ⟩. Since F is a gadget, it has no
nontrivial zero subsums. Thus there is a nonempty subset T ⊊ F , unique up to complementation, such that

x =
∑
f∈T

f =
∑

f∈F \T

f.

Our task is to show that the elements of F can be ordered in such a way that neither the elements of T , nor
the elements of F \ T appear as a contiguous subsequence. Since x /∈ F , we know that |T |, |F \ T | ≥ 2. We can
build our desired ordering by taking all but one of the elements of T , then one element of F \ T , then the last
element of T , then the remaining elements of F \ T (in any way). □

The next step is incorporating a flexible family of gadgets into an absorbing path in CayFn
2
(S).

Definition 6.5. We say a rainbow path P in CayFn
2
(S) is F-absorbing for a flexible family F of gadgets in S

if there exists an injective function c : F → S \
⋃

F such that for each F ∈ F we can find a subpath of P using
precisely the colours in F ∪ c(F ). We say the colours of P not in

⋃
F are the fixed colours of P .

In an F-absorbing path P , for each F ∈ F we can delete the subpath of P consisting of the edges with colours
F ∪ c(F ). Doing so leaves two subpaths of P , which we can join using a single edge of colour c(F ) (since F is
zero-sum). We will denote the resulting subpath by P − F ; see Figure 2 for an illustration.

The following lemma will let us find an absorbing path inside a random vertex subset while avoiding a small
set of forbidden vertices.

Lemma 6.6. Let p ∈ (0, 1], let F be a flexible family of gadgets in E ⊆ Fn
2 , and let U ⊆ Fn

2 be a subset of
size |U | ≤ |F|. Suppose p8|E| ≥ 212|F| ≥ 213n. Let R be a p-random subset of Fn

2 . Then with high probability,
we can find, for each u ∈ Fn

2 , an F-absorbing rainbow path in CayFn
2
(E) of length at most 8|F| that starts at

u ∈ Fn
2 and has all other vertices in R \ U .
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Proof. First we add a fixed, unique colour cF ∈ E \
⋃

F to each gadget F ∈ F and construct a rainbow path
PF that starts at 0 and uses the colours {cF } ∪ F (which is possible by Proposition 6.4). Write PF,y for the
translate of PF starting at the vertex y ∈ G. Let

X := E \
⋃

F ∈F
({cF } ∪ F )

be the set of unused colours from E, and notice that that |X| ≥ |E| − 7|F| ≥ |E|/2. For each vertex v ∈ Fn
2 and

gadget F ∈ F , we define Ev,F to be the event that we can find a collection of at least 10|F| elements x ∈ X

whose corresponding paths PF,v+x are all vertex-disjoint and contained in R.

We will show that these events are (very) likely. Fix some v ∈ Fn
2 , F ∈ F . We will find many paths PF,v+x

which are disjoint and do not contain v. There are |X| paths in total. Of these, at most |PF | + 1 contain v,
since the position of v in a translate of PF determines the translate. Each path PF,v+x can intersect at most
(|PF |+1)2 other such paths, since again the translate of the other path is determined by the relative positions of
the intersection point in the two paths. Thus there is a family of |X|/100 vertex-disjoint paths PF,v+x avoiding
v. Each such path is contained in R with probability p|PF |+1, and these events are independent. Hence the
number of surviving paths dominates Bin(|X|/100, p|PF |+1), and by a Chernoff bound at least

|X|p|PF |+1/200 ≥ |E|p8/400 ≥ 10|F|

survive with probability at least 1 − exp(−|X|p|PF |+1/800) ≥ 1 − 1/N3 (using |E|p8 ≥ 212|F| ≥ 213n). Thus
P(Ev,F ) ≥ 1 − 1/N3, and by a union bound we conclude that with probability at least 1 − 1/N all of the events
Ev,F occur.

Suppose we are in such an outcome. We find our F-absorbing path by incorporating gadgets F one at a time,
as in the proof of Lemma 6.1. We start our path P at the vertex u and iteratively add on paths of the form
PF,x+v, where v is the current endpoint of P . At each step, we identify a hitherto-unincorporated gadget F

and consider the 10|F| paths PF,x+v identified in the previous paragraph. Of these, at least 9|F| correspond to
values of x that have not yet been used. Since |P | < 8|F|, there are more than |F| paths PF,x+v that remain
disjoint from P . Finally, since |U | ≤ |F|, we can choose a path PF,x+v that is also disjoint from U (notice that
each element of U eliminates at most one choice of x since the paths PF,x+v are vertex disjoint); we choose one
such path and concatenate P with it. □

6.2. The absorbing lemma. In this subsection we establish a lemma which will eventually allow us to “absorb”
any small subset of colours using the flexibility provided by an absorbing path. We also need the ability to work
within a random vertex subset and guarantee that we avoid a given small subset of forbidden vertices.

Lemma 6.7. Let p ∈ (0, 1], let F be a flexible family of at least 212p−7n gadgets in S ⊆ Fn
2 , let U ⊆ Fn

2 be a
set of size |U | ≤ |F|/128. Let T ⊆ Fn

2 be a p-random set. Then with high probability, the following holds for
every L ⊆ S of size |L| ≤ |F|p7/212 and every vertex v ∈ Fn

2 : There exist a subfamily of gadgets F ′ ⊆ F and
a rainbow path in CayFn

2
(L ∪

⋃
F ∈F ′ F ) that starts at v, is otherwise contained in T \ U , and uses all except

possibly one colour from L ∪
⋃

F ∈F ′ F .

Proof. Consider a pair of distinct colours a, b ∈ S. Our first goal is to construct a subfamily Fa,b ⊆ F consisting
of at least |F|/64 gadgets F ∈ F (possibly not inheriting the original orderings {f1, f2, . . . , f|F |}) such that
extending each leg of Fa,b-out-spider starting at 0 by the edge of colour a and then the edge of colour b

produces a family of vertex-disjoint paths (except for the shared initial vertex 0).

For each F ∈ F , consider the walk PF that starts at 0 and then follows the edges of colours f1, . . . , f|F |−1, a, b

(recall that F = {f1, . . . , f|F |}). Note that PF is a bona fide path as long as a, a + b /∈ ⟨F ⟩. We claim that each
path PF can intersect at most 11 other paths PF ′ at vertices other than 0. Indeed, PF can intersect PF ′ only
if {f ′

1, f ′
1 + f ′

2, . . . , f ′
1 + · · · + f ′

|F ′|−1} intersects the set

{f1 + · · · + fi, f1 + · · · + fi + a, f1 + · · · + fi + a + b : 1 ≤ i ≤ |F | − 1} ∪ {f1 + · · · + f|F |−1 + b}.

Property F2 in the definition of flexibility ensures that f1 + · · · + fi can never appear in {f ′
1, f ′

1 + f ′
2, . . . , f ′

1 +
· · · + f ′

|F ′|−1}. This leaves us with at most 2(|F | − 1) + 1 ≤ 2(5) + 1 = 11 possible collisions.

It follows that if we can find a collection of |F|/3 gadgets F ∈ F for which PF is a path (as opposed to just a
walk), then we can find the desired subfamily Fa,b consisting of at least |F|/36 gadgets F whose corresponding
paths PF are vertex-disjoint (except for 0).



24 ON GRAHAM’S REARRANGEMENT CONJECTURE OVER Fn
2

Suppose instead that for some x ∈ {a, a + b} there are at least |F|/3 gadgets F ∈ F with x ∈ ⟨F ⟩. As the sets
F ∈ F are disjoint by property F1 of flexibility, there is at most one such F which contains x; let us remove it
from consideration (if it exists). For each remaining F we have x ∈ ⟨F ⟩\F ; Proposition 6.4 provides an ordering
of the elements of F such that x is not equal to any contiguous subsum of F . The walk PF with respect to this
ordering of F is a bona fide path. The spans of any two such F ’s intersect precisely in ⟨x⟩ by F3, so there are
no collisions among the sets {f1, f1 + f2, . . . , f1 + · · · + f|F |−1}. We can thus repeat the above argument from
the second paragraph of the proof in order to find the desired family Fa,b.

For each vertex u ∈ Fn
2 \U and two colours a, b ∈ S, let Eu,a,b be the event that we can find a collection of at least

10|L| gadgets F ∈ Fa,b for which the translate of PF starting at u is contained in T (except possibly u) and does
not intersect U . By the above considerations, there are at least |F|/128 such paths which avoid U . The number
of surviving such paths in R dominates Bin(|F|/128, p7). By Chernoff’s bound, at least |F|p7/28 > 10|L| of
these paths survive (i.e., Eu,a,b occurs) with probability at least 1 − exp(|F|p7/210) ≥ 1 − 1/N4. A union bound
over u, a, b ensures that with probability at least 1 − 1/N all of the events Eu,a,b occur.

Suppose we are in such an outcome. We will construct a sequence of subsets L = L0, L1, . . . , Lm and a sequence
of directed rainbow paths P0 ⊂ P1 ⊂ · · · ⊂ Pm starting at v such that for each 0 ≤ i ≤ m ≤ |L| − 1, we have
|Li| ≤ |Li−1| − 1, and the path Pi is contained in T \ U , has size |Pi| ≤ |Pi−1| + 7 , and contains L \ Li. The
path P|L|−1 will satisfy the conclusion of the lemma. Suppose we have already done this for some i < |L| − 1.
Then |Li| ≥ 2. Pick some distinct a, b ∈ Li. By the above considerations, we can find 10|L| − 2 vertex-disjoint
rainbow paths, each of which uses edges with colours a, b and all but one of the elements of some F ∈ F , and
starts at the endpoint of Pi and has all other vertices in T \ U . One of these paths uses a new F , does not use
any of the already used colours and is vertex-disjoint from Pi since 2i + |Pi| ≤ 9i + 1 ≤ 9|L|. Now append this
path to Pi to obtain Pi+1. To obtain Li+1 from Li, remove a, b, F ∩ Li and add the unused element of F . □

7. Proof of the dense case for Fn
2

In this section we prove Graham’s conjecture over Fn
2 in the dense case, namely, the case where the size of the

set S is linear in N := 2n. The results of Section 9 show that any subset S ⊂ G \ {0} of size |S| ≥ |G|1−c, in
any finite group G, admits a valid ordering, so those results subsume the results in this section. We include
a short proof of the weaker result here to demonstrate the implementation of the tools from the previous two
sections, which we will also need for the sparse case of Fn

2 . We also note that the simpler results in this section
already suffice for proving Theorem 1.3 using only the basic absorption argument (similar in spirit to one used
in [13]), rather than the distributive absorption tools that we will need for the general dense case in Section 9.

The following theorem handles the extremely dense case. It is convenient to isolate this regime since in the
dense-but-not-extremely-dense case our absorption arguments will make essential use of the resulting extra
vertex space. The result that we need is contained in [36]; see Appendix A for more details.

Theorem 7.1 ([36]). Let γ > 0. Then for all sufficiently large N the following holds: For every group G of
order N , every subset S ⊆ G \ {id} with |S| ≥ N − N1−γ has a valid ordering.

For the rest of this section, assume that S ⊂ Fn
2 \ {0} has linear size in N = 2n. The case |S| ≥ 3

4 N , which
requires a separate treatment due to tighter space constraints, will serve as a simple illustration of our strategy.
The main idea is that we first set aside an absorbing path, then find a rainbow path using nearly all of the
remaining colours of S, and finally use some of the gadgets from the absorbing path to integrate the remaining
few colours of S. To prevent unwanted collisions among the rainbow paths produced in these three steps, we
carry out each step in its own random vertex subset.

Theorem 7.2. Let n be sufficiently large, and set N := 2n. If S ⊆ Fn
2 \ {0} is a subset of size |S| ≥ 3

4 N , then
CayFn

2
(S) has a rainbow path of length |S| − 1.

Proof. Set γ := 2−14. If |S| ≥ N − N1−γ/32, then we are done by Theorem 7.1. It remains to consider the case
|S| ≤ N − N1−γ/32. Set p := N−γ/16/2.

Let E be a 1
4 -random subset of S. Partition Fn

2 into three sets R ⊔ M ⊔ T by independently assigning each
vertex to R, M, T with probabilities p, 1 − 2p, p, respectively.

We apply Lemma 5.7 with S = S, J = ∅, M = M , S′ = E and parameters

ε = 3/4, q = 1 − 2p, q′ = 1/4, ζ = 1/8, µ = N−γ .
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The graph CayFn
2
(S) has no 1

4 -sparse cuts since |S| ≥ 3
4 N , and the other hypotheses of the lemma are easy to

check (|J | = 0, 1 − 2p = q ≥ (1 + µ)(1 − N−γ/32), and q′ ≤ 1 − µq/4). Thus with high probability we have:

P1 For any SF ⊆ E and any two vertices u, v ∈ Fn
2 , we can find a rainbow path from u to v in CayFn

2
(S\SF ),

using all but at most µq colours from S \ SF , such that all of the internal vertices of the path lie in M .

By a Chernoff bound we have |E| ≥ N/8 with high probability. In any such outcome, Lemma 6.3 (with ε = 1)
lets us find a flexible family F of gadgets in E of size Np8/215 (since this is at most |E|/250); fix such a flexible
family for each outcome. Lemma 6.6 with F = F , E = E, U = ∅, R = R (note that |F| ≤ |E|p8/212) guarantees
that with high probability we have:

P2 There is an F-absorbing rainbow path in CayFn
2
(E) starting from any given vertex and otherwise

contained in R.

Lemma 6.7 with F = F , S = S, U = ∅, T = T (note that |F| ≥ 212p−7 log N) shows that with high probability
we have:

P3 For any L ⊆ S of size |L| ≤ |F|p7/212 and any vertex v ∈ Fn
2 , there is some F ′ ⊆ F such that

CayFn
2
(L ∪

⋃
F ∈F ′ F ) has a rainbow path that starts at v, is otherwise contained in T , and uses all

except possibly one the colours from L ∪
⋃

F ∈F ′ F .

From now on consider an outcome for E, M, R, T where conclusions P1-P3 hold.

Fix some distinct vertices u, v ∈ M . P2 provides an F-absorbing rainbow path PA starting at u, otherwise
contained in R, and using only colours from E; write SF for the the set of colours from E appearing in PA.
Now P1 allows us to find a rainbow path PM from u to v which is contained in M and saturates all but some
set L of up to µqN colours from S \ SF . Note that |L| ≤ µqN ≤ N1−γ ≤ Np15/227 = |F|p7/212. Now PA ∪ PM

is a rainbow path using precisely the colours in S \ L. Next, as |L| ≤ |F|p7/212, by P3 we can find a subfamily
of gadgets F ′ ⊆ F and a rainbow path PT starting at v and otherwise contained in T which uses all except
possibly one colour of L ∪

⋃
F ∈F ′ F . Now we use the F-absorbing properties of PA to remove

⋃
F ∈F ′ F and

pass to a shorter path P ′
A using only a subset of the vertices of PA (see the illustrations in Section 2.2). Finally,

P ′
A ∪ PM ∪ PT is a rainbow path using all but one colour from S, as desired. □

We now turn to the main argument for the dense regime. In the very-dense setting of Theorem 7.2, the Cayley
graph CayS(Fn

2 ) was automatically a robust expander. In the merely-dense regime, we have to use our regularity
lemma to locate a robustly expanding part of CayS(Fn

2 ); this requires setting aside a few colours of S that lie
outside of the subspace H from Lemma 2.8, and re-integrating these colours causes some additional technical
complications. Also, to avoid the case where S ∩ H is too dense in H for Lemma 5.7 to apply, we artificially
remove a few of these colours and re-integrate them separately, as with the colours in S \ H.

Theorem 7.3. Let ε ∈ (0, 1/16), and let n be sufficiently large in terms of ε. Set N := 2n. Then for any
S ⊆ Fn

2 of size |S| ≥ εN , the graph CayFn
2
(S) has a rainbow path of length |S| − 1.

PM

M

H

Fn
2 \ H

A R T

P
′
M

PRPA PT

v

u w x

Figure 7. Illustration of the rainbow path constructed in the proof of Theorem 7.3. The dashed line indicates
that the path P ′

M does not intersect R. Colours indicate the different segments of the path, which of course
are all rainbow with disjoint colour sets (except for PT and PR, whose colours are disjoint only after we
activate the appropriate gadgets to replace PR by P ′

R). The picture depicts the case
∑

J /∈ H; the other case
looks only marginally different (PT might “jump” once from T ∩ H to T \ H at the point where it uses an
edge of the colour that we removed from PA). PA uses the colours J ∪ S′

F ; P ′
M uses the colours S1 ∪ S′′

F , PR

uses the colours SF ; PM uses the colours S0 \ (SF ∪ S′
F ∪ S′′

F ∪ L); and PT uses the colours L ∪
⋃

F ∈F ′ F , with
at most one colour missing.
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Proof. We apply our regularity result Lemma 2.8 (with ε replaced by 2ε11 and σ = ε) to find a subspace H

such that |S ∩ H| ≥ (1 − 2ε11)|S| and CayH(S ∩ H) has no ε12-sparse cuts. Let us identify H ∼= Fm
2 and set

J := S \ H; notice that

(11) |J | ≤ 2ε11|S|.

We now distinguish two cases based on the proportion of H occupied by S.

Case 1. |S ∩ H| ≤ (1 − ε3)|H|.
We set S0 := S ∩ H, S1 := ∅.

Case 2. |S ∩ H| > (1 − ε3)|H|.
Here, we set S0 to be an arbitrary subset of S ∩ H with size |S0| = (1 − ε3)|H| and define S1 := (S ∩ H) \ S0,
so that |S1| ≤ ε3|H|. Note that by doing this we maintain that CayH(S0) does not have ε12-sparse cuts4. We
also note that in this case we may assume J = S \ H ̸= ∅, as we are otherwise done by Theorem 7.2.

So in both cases we ensure that the partition S = S0 ∪ S1 ∪ J satisfies

(12) |S0| ≤ (1 − ε3)|H|, |S1| ≤ ε3|H|, and CayH(S0) has no ε12-sparse cuts.

Set p := ε4. Let S′, E1, E2 be disjoint 1
4 -random subsets of S0, and let A ⊔ R ⊔ M ⊔ T be a random partition of

Fn
2 where each vertex is (independently) assigned to A, R, M, T with probabilities p, p, 1 − 3p, p, respectively.

We now apply Lemma 5.7 with S = S0, M = M, S′ = S′ ∪ E1 ∪ E2, J = ∅, Fm
2

∼= H and parameters

(13) ζ = ε12, q = 1 − 3p, µ = εp15/228, q′ = 3/4,

and we replace ε in Lemma 5.7 by ε/2. The hypotheses of the lemma are satisfied since

|S0| = |S| − |S1| − |J |
(12)
≥ (ε − ε3 − 2ε11)|H| ≥ ε

2 |H|,

and q ≥ (1 + µ)|S0|/|H| (which holds since |S0|
(12)
≤ (1 − ε3)|H|, while q = 1 − 3p = 1 − 3ε4) and q′ ≤ 1 − µq/4.

With this choice of parameters the lemma now tells us that with high probability we have:

Q1 For any SF ⊆ S′∪E1∪E2 and any distinct vertices x, w ∈ H, we can find a rainbow path in CayH(S0\SF )
from x to w, with all other vertices in M , such that the path uses all but µq of the colours of S0 \ SF .

The following two properties depend on the random set S′. If |S′| ≤ |S0|/8, which by a Chernoff bound occurs
with probability o(1), then we declare both properties to fail. So we will apply Lemmas 6.6 and 6.7 only in
outcomes where |S′| ≥ |S0|/8 ≥ |S|/16. In this case, Lemma 6.3 (with ε = 1) produces a flexible family F of
gadgets in S′ of size

(14) |F| = p8|S|/216,

since this is smaller than |S|/254 ≤ |S′|/250.

Lemma 6.6 with F , E = S′, U = ∅, and R (which is allowed since |F| (14)= p8|S|/216 ≤ |S′|p8/212) tells us that
with high probability we have:

Q2 For each vertex u ∈ Fn
2 , there is an F-absorbing rainbow path in CayH(S′) starting from u and otherwise

contained in R.

Lemma 6.7 with F , U = ∅, S and T (which is allowed since |F| ≥ 212p−7 log N) tells us that with high probability
we have:

Q3 For any L ⊆ S of size |L| ≤ µqN + 1 and any vertex v ∈ Fn
2 , there is some F ′ ⊆ F such that

CayFn
2
(L ∪

⋃
F ∈F ′ F ) has a rainbow path that starts at v, is otherwise contained in T , and uses all

except possibly one of the colours from L ∪
⋃

F ∈F ′ F .

To check that we may indeed take L to have size up to µqN+1, note that µqN+1
(13)
≤ εp15N/228 ≤ p15|S|/228 (14)=

|F|p7/212.

4We even have the stronger property that there are no 1
4 -sparse cuts.
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As above, a Chernoff bound tells us that with high probability |E1| ≥ 1
8 |S0| ≥ 1

16 |S|
(11)
≥ p−2·max{40|J |, 96 log N}.

In this case we can apply Lemma 6.1 with G = Fn
2 , J, E = J ∪ E1, and our p-random subset A to conclude that

with high probability we have:

Q4 For each vertex u ∈ Fn
2 , there is a rainbow path in CayFn

2
(E1 ∪ J), using all of the colours from J , that

starts at u and is otherwise contained in A.

Again by Chernoff’s bound, we have that with high probability |E2|(1 − 3p)2 ≥ 1
16 |S| ≥ max{40|S1|, 96 log N}.

In this case, another application of Lemma 6.1, this time with G = H, J = S1, E = S1 ∪ E2, and our (1 − 3p)-
random subset M , tells us that with high probability we have:

Q5 For each vertex u ∈ Fn
2 , there is a rainbow path in CayFn

2
(S1 ∪ E2), using all of the colours from S1,

that starts at u and is otherwise contained in M .

Consider now an outcome for which the properties Q1-Q5 all hold. Fix a vertex u ∈ H.

First, using Q4, we find a rainbow path PA, starting at u and otherwise contained in A, such that PA uses all
of the colours from J and some subset S′

F of the colours of E1. Among all such paths, choose one of minimal
length. Let v denote the last vertex in PA.

Next, we use Q5. If
∑

J /∈ H, then we find a rainbow path P ′
M , starting at v and otherwise contained in M ,

such that P ′
M uses all of the colours from S1 and some subset S′′

F of the colours of E2. Suppose instead that∑
J ∈ H, and that J ̸= ∅ (if this does not happen we must be in Case 1. and this whole step may be skipped

since S1 = ∅). Then the last edge of PA uses a colour from J by the minimality of PA. In this case, delete v

from PA, and let v′ denote its new final vertex. Now use Q5 just as above but with v replaced by v′.

Note that in either case V (P ′
M ) ∩ H = ∅ since P ′

M uses only edges with colours in S1 ∪ E2 ⊂ H and it starts
from a vertex not in H. To check this, note that in the first case, the starting point of PA is u which is in H,
and E1 ⊆ H, while

∑
J /∈ H so that v /∈ H. In the second case, we have v ∈ H but v′ /∈ H since (v, v′) ∈ J

which is disjoint from H (recall that we defined J := S \ H). We will use this property that V (P ′
M ) ∩ H = ∅ to

ensure that P ′
M is disjoint from the path PM which we will later build in M , by making sure that all vertices

of PM are contained within H .

We then use Q2 to find an F-absorbing rainbow path PR, starting at u and otherwise contained in R, whose
colour set is some SF ⊆ S′. Let w be the last vertex of PR. Note that w ∈ H since u ∈ H and S′ ⊆ H.

Now Q1 gives us a rainbow path PM from x to w in M which uses all of the colours of S0 \ (SF ∪ S′
F ∪ S′′

F )
except for some set L of size |L| ≤ µqN (note that Q1 applies since SF ⊆ S′ and S′

F ∪ S′′
F ⊆ E1 ∪ E2). The

path PM is fully contained in H since w ∈ H and S0 ⊆ H. If we trimmed the last edge of PA in our application
of Q5, then we add the colour of that edge to L.

So far we have found a rainbow path P ′
M ∪ PA ∪ PR ∪ PM which avoids the vertex set T and uses precisely the

colours in S \ L.

Finally, by Q3 we can find a subfamily of gadgets F ′ ⊆ F and a rainbow path PT , starting at x and otherwise
contained in T , which uses all except possibly one colour of L ∪

⋃
F ∈F ′ F . Since PR is F-absorbing, we may

remove the gadgets in F ′ from it to obtain a shorter path P ′
R. Now P ′

M ∪ PA ∪ P ′
R ∪ PM ∪ PT is a rainbow path

using all but at most one colour from S, as desired. □

8. The sparse case

In this section we treat the sparse case of Theorem 1.3. This takes the following shape.

Theorem 8.1. There is a constant ν > 0 such that every subset S ⊆ Fn
2 \ {0} of size |S| ≤ ν · 2n satisfying

S + S = Fn
2 has a valid ordering.

This theorem shows that sparse subsets S of Fn
2 have valid orderings as long as S + S = Fn

2 . The following
simple lemma shows that this additional assumption is in fact not restrictive.

Lemma 8.2. Let S ⊆ Fn
2 . If S + S ̸= Fn

2 , then there exists a non-trivial quotient group H of Fn
2 such that the

projection map π : Fn
2 → H is injective on S. In particular, π(S) having a valid ordering in H implies that S

has a valid ordering in Fn
2 .
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Proof. Let v ∈ Fn
2 \ (S + S), and set H := Fn

2 /⟨v⟩. Now π is injective on S because otherwise we would have
distinct s1, s2 ∈ S with π(s1) = π(s2), and then we would have s1 + s2 = v, which is impossible. The second
part of the lemma is obvious. □

Before turning to the proof of Theorem 8.1, let us confirm that Theorem 8.1 and Theorem 7.3 indeed combine
to establish Theorem 1.3. Lemma 8.2 shows that it suffices to consider sets S ⊆ Fn

2 with S + S = Fn
2 . Now

Theorem 8.1 handles the regime |S| ≤ νN (with ν as given by Theorem 8.1), and Theorem 7.3 handles the
regime |S| ≥ νN .

Our proof of Theorem 8.1 splits into a “structured” (non-expanding) case and “random-like” (expanding) case.
The following definition makes this distinction precise.

Definition. A subset E ⊆ Fn
2 is (γ, K)-everywhere-expanding if every subset E′ ⊆ E of size γ|E| satisfies

|E′ + E′| ≥ K|E′|.

8.1. The structured case. We start with the non-expanding case since it will essentially reduce to (several
interdependent instances of) the dense case and the argument is similar to what we saw in the previous section.

8.1.1. Preliminaries. We always work with a set S ⊂ Fn
2 with |S| ≤ ν · 2n and S + S = Fn

2 . These assumptions
already guarantee that S has at least a bit of expansion. The following lemma lets us set aside a small,
well-expanding reservoir of colours for later use. As usual, we omit floor and ceiling functions throughout.

Lemma 8.3. Let S ⊆ Fn
2 , and let 2/|S| ≤ γ ≤ 1. Then there is a subset X ⊆ S of size |X| = γ|S| such that

|X + X| ≥ γ2

2 |S + S|.

Proof. Take a uniformly random subset X of the specified size. Each element of S + S survives in X + X with
probability at least γ · γ|S|−1

|S|−1 ≥ γ2/2, so X + X has size at least γ2

2 |S + S| in expectation. □

We will often use Ruzsa’s triangle inequality to translate large doubling of T + T into good expansion of V + T

for any other (reasonably large) subset V .

Lemma 8.4 (Ruzsa triangle inequality). For any subsets V, T of an abelian group, we have |V + T |2 ≥ |V | ·
|T + T |.

We also need a version of the Freiman–Ruzsa Theorem in Fn
2 . An asymptotic formulation of the relevant result

was first proven by Green and Tao [22], and we will use the following version due to [14].

Theorem 8.5. Let K ≥ 0. If T ⊆ Fn
2 satisfies |T + T | ≤ K|T |, then there is a subspace H of Fn

2 such that
T ⊆ H and |H| ≤ 22K |T |.

If a set S lacks everywhere-expanding subsets, then we can (almost) partition it into a small number of subsets
with small doubling, and each such subsets is dense in a (smaller) subspace. We will analyse most of the subsets
within their respective subspaces. The following lemma will allow us to link up the resulting pieces. Here and
in the subsequent theorem, one should think of ν, γ, K as constants where K > 0 is sufficiently large in terms
of γ and ν > 0 is sufficiently small in terms of K. We work with concrete dependences among these constants
to make the calculations easier to verify.

Lemma 8.6. Let 0 < ν, γ ≤ 1 ≤ K satisfy 2ν1/48 ≤ 21−K ≤ γ. Suppose s, n ∈ N are such that 8γ−2 ≤ s ≤ νN ,
where N := 2n. Let t ≤ 2/γ, and let {Hi}i∈[t] be a sequence of (not necessarily distinct) subspaces of Fn

2 ,
each of size between γs and 22Ks. If X ⊆ Fn

2 satisfies |X| ≤ γs and |X + X| ≥ (γ2/5)N , then there exist
w1, . . . , wt ∈ Fn

2 such that the following holds with Wi := wi + Hi:

(1) For each i ∈ [t], we have |Wi ∩
⋃

ℓ∈[t]\{i} Wℓ| ≤ ν1/4s.

(2) There is a sequence of distinct elements x1, y1, . . . , xt−1, yt−1 ∈ Fn
2 such that xi ∈ Wi, yi ∈ Wi+1, and

xi + yi ∈ X (i.e., (xi, yi) is an edge in CayFn
2
(X)) for each i ∈ [t − 1], and the xi + yi’s are distinct.

Proof. We find suitable elements wi+1, xi, yi one value of i at a time. Start with w1 := 0, so that W1 = H1.
Suppose we have already found w1, . . . , wm, x1, y1, . . . , xm−1, ym−1 such that∣∣∣∣∣∣Wi ∩

⋃
ℓ∈[m]\{i}

Wℓ

∣∣∣∣∣∣ ≤ (m + 1 − i)ν1/4γs/2
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for each i ∈ [m] and the conditions in part (2) of the lemma statement are so far satisfied. As long as m < t,
we will find wm+1, xm, ym preserving these conditions (with m replaced by m + 1).

Set Xfree := X \ {x1 + y1, . . . , xm−1 + ym−1}. Then

|Xfree + Xfree| ≥ |X + X| − t|X| ≥ (γ2/5)N − tγs ≥ (γ2/5)N − 2νN ≥ (γ2/6)N

since ν ≤ γ2/60 (with room to spare). Likewise, set Wfree := Wm \ {x1, y1, . . . , xm−1, ym−1}, so that

|Wfree| ≥ |Wm| − 2t ≥ γs − 4/γ ≥ γs/2.

Now the Ruzsa triangle inequality (Lemma 8.4) gives

|Wfree + Xfree| ≥
√

|Wfree|
√

|Xfree + Xfree| ≥
√

γs/2
√

(γ2/6)N ≥
√

γ3

12ν
s ≥ ν−2/5s,

where we used N ≥ s/ν and ν ≤ γ15/125 (say).

Thus there are at least ν−2/5s
22Ks

≥ ν−1/3 cosets of Hm+1 which intersect Wfree + Xfree. At most 2m of these
cosets intersect {x1, y1, . . . , xm−1, ym−1}, and at most 23K+1s

ν1/4γs
≤ ν−1/3 − 2m of them contain at least ν1/4γs/2

elements of W1 ∪ · · · ∪ Wm (the last inequality uses m ≤ t ≤ 2/γ and ν ≤ 2−36K−24γ12) . Hence there is a
coset Wm+1 = wm+1 + Hm+1 which intersects Wfree + Xfree in some element ym /∈ {x1, y1, . . . , xm−1, ym−1}
and contains at most ν1/4γs/2 elements of W1 ∪ · · · ∪ Wm. In particular, there is some xm ∈ Wfree such that
xm + ym ∈ Xfree ; this choice of xm, ym works for our induction.

Once we reach m = t, we have |Wi ∩
⋃

ℓ∈[t]\{i} Wℓ| ≤ tν1/4γs/2 ≤ ν1/4s for every i ∈ [t], as desired. □

8.1.2. The main argument. We are now ready to handle the fully-structured case. In the following theorem, we
write 1/s, ν ≪ 1/K ≪ γ ≪ α ≪ 1 to mean that α ∈ (0, 1) is a sufficiently small constant; γ is sufficiently small
in terms of α; K is sufficiently large in terms of γ; and ν, 1/s are sufficiently small in terms of K.

Theorem 8.7. Suppose 1/s, ν ≪ 1/K ≪ γ ≪ α ≪ 1. Let S ⊆ Fn
2 be a set of size s := |S| ≤ νN (where

N := 2n as usual), and suppose that S + S = Fn
2 . If S has no (γ/α, K/γ)-everywhere-expanding subset E of

size |E| = αs, then CayFn
2
(S) has a rainbow path of length |S| − 1.

Proof. By assumption, every subset of S of size at least αs contains a subset of size γs with doubling constant
at most K. We first extract X ⊆ S of size γs having |X + X| ≥ γ2|S + S|/2 = γ2N/2 by Lemma 8.3. Now
the above allows us to extract disjoint S1, . . . , St ⊆ S \ X, each of size γs (so t ≤ 1/γ), and in total covering
all but a set J0 of at most αs elements of S \ X, such that |Si + Si| ≤ K|Si| for each i. By Theorem 8.5 this
implies that there exist subspaces Hi ⊇ Si such that |Hi| ≤ 22K |Si|. Next we can apply the regularity type
Lemma 2.8 to each Si (which has density at least 2−2K inside of Hi) to find a subset S′

i ⊆ Si of size at least
(1 − α)|Si| and a subspace H ′

i of Hi containing S′
i such that CayH′

i
(S′

i) has no α2−2K−1-sparse cuts. We add
the remaining elements

⋃
Si \ S′

i, of which there are at most
∑

i α|Si| ≤ αs, to the set J0 to create J1, which
now has size |J1| ≤ 2αs.

Let us for convenience relabel H ′
i so that |S′

i|/|H ′
i| is non-increasing, and let m be the largest index for

which |S′
m|/|H ′

m| ≥ 3/4. Next, we invoke Lemma 8.6 on the sequence of subspaces H ′
1, . . . , H ′

t, H ′
1, . . . , H ′

m

(so the first m of these subspaces are repeated at the end) and X. This gives us cosets W1, . . . , Wt+m and
x1, y1, . . . , xt+m−1, yt+m−1 ∈ Fn

2 such that Wi is a coset of H ′
i mod t, each Wi intersects the union of other Wj ’s

in at most ν1/4s elements, and we have distinct xi ∈ Wi, yi ∈ Wi+1 with distinct xi +yi ∈ X. Our final rainbow
path will include the t+m−1 edges (xi, yi) so we mark the set of vertices U := {x1, y1, . . . , xt+m−1, yt+m−1} as
“used”. We also add the remaining colours from X namely X \ {x1 + y1, . . . , xt+m−1 + yt+m−1} to J1 to obtain
J2; thus J2 is the current junk set of colours that we have to absorb into our rainbow path at the end. Let us
also write W ′

i := Wi ∩
⋃

j ̸=i Wj for each i, so |W ′
i | ≤ ν1/4s.

Next, for each i ∈ [t], let Ei be a 1
4 -random subset of S′

i. Let E =
⋃

Ei.

For every i ≤ m we take Si,1 to be an independent 3
4 -random subset of S′

i. We then set Si,2 to contain S′
i \ Si,1

together with a 2
3 -random subset of Si,1. So in particular, every point has a probability of 1

4 + 3
4 · 2

3 = 3
4 to be

sampled into Si,2, so it is also a 3
4 -random subset of S′

i. Note also that if we reveal either Si,1 or Si,2 (but not
the other), then Si,1 ∩ Si,2 is a 2

3 -random subset of the revealed set (and Ei ∪ (Si,1 ∩ Si,2) is a 3
4 -random subset

of S′
i). This procedure also ensures that Si,1 ∪ Si,2 = S′

i.
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We next take a random partition of Fn
2 into three sets R, M, T where each vertex is assigned to these sets with

probability p, 1 − 2p, p, respectively, with p = 1/16.

We want that the outcome of Lemma 5.7 applies for each i, when applied to each Wi
∼= Fn′

i
2 , with

S =


Si,1 if i ≤ m,
S′

i if m < i ≤ t,
Si,2 if i > t,

J = W ′
i ∪ U, M = M ∩ Wi, S′ =


Ei ∪ (Si,1 ∩ Si,2) if i ≤ m,
Ei if m < i ≤ t,
Ei ∪ (Si,1 ∩ Si,2) if i > t.

The choice of parameters that we use here5 is

q = 1 − 2p, ε = 2−2K−1, ζ = α2−2K−1, µ = γα2−2K , q′ = 3/4, j = 2ν1/4.

In order for the lemma to apply, we check that

• |Si,1|, |Si,2|, |S′
i| ≥ 2−2K−1|Wi|, which holds since |S′

i| ≥ (1 − α)|Si| ≥ (1 − α)2−2K |Wi| ≥ 3
4 2−2K |Wi|

and |Si,1|, |Si,2| ≥ 2
3 |S′

i| holds with high probability by Chernoff’s bound6;
• CayWi

(Si,1), CayWi
(Si,2), CayWi

(S′
i) have no ζ-cuts. This holds for m < i ≤ t since we chose S′

i (using
the regularity type Lemma 2.8) so that CayWi

(S′
i) has no α2−2K−1 cuts. It also holds for i ≤ m and i > t

since Chernoff guarantees with high probability7 that |Si,1|, |Si,2| ≥ 17
32 |Wi| as Si,1, Si,2 are 3

4 -random
subsets of the set S′

i which has density at least 3/4 in H ′
i for such i, so in these cases CayWi

(S \ S′)
doesn’t have a 1

32 -sparse cut;
• q|Wi|/(1 + µ) ≥ |S′

i| if m < i ≤ t (which holds since |S′
i|/|Wi| ≤ 3/4 for m < i ≤ t), and q|Wi|/(1 + µ) ≥

|Si,1|, |Si,2|, if i ≤ m or i > t since in this case |Si,j |/|Wi| ≤ 5/6 with high probability, again by
Chernoff’s bound;

• q′ ≤ 1 − µq/4, which easily holds.

With this choice of parameters the lemma tells us that with high probability

Z1 For any SF ⊆ Ei (if m < i ≤ t) and SF ⊆ Ei ∪ (Si,1 ∩ Si,2) (if i ≤ m, or i > t) we can find a rainbow
path with internal vertices in M \ (W ′

i ∪ U), joining xi and yi, using all but µq|Wi| colours from S′
i \ SF

(if m < i ≤ t), Si,1 \ SF (if i ≤ m), and Si,2 \ SF (if i > t).

We now reveal E1, . . . , Et. Chernoff’s bound implies that with high probability8 |Ei| ≥ 1
8 |S′

i| for each i. This
implies |E| ≥ s/16 ≥ N1/2/16, noting that s = |S| ≥ N1/2 because S + S = Fn

2 . Next, by Lemma 6.3 (with
ε = 1/16) we may find a flexible family F of s/262 gadgets in E, noting that the assumption of this lemma is
satisfied as s/262 ≤ |E|/258.

We now invoke Lemma 6.6 applied with the random set R, the set U of vertices that are already used, this
set E, and this flexible family F . The requirements of the lemma are satisfied since |F| ≥ 2/γ ≥ |U |, and
213 log N ≤ 212|F| ≤ |E|p8. The lemma guarantees that with high probability

Z2 there is a rainbow F-absorbing path in CayFn
2
(E), starting at any vertex of our choosing, and otherwise

being in R \ U .

Finally, apply Lemma 6.7, with the random set T , the set U of vertices that are already used, and our flexible
family F . To verify the assumptions, note that |F| ≥ max{212p−7 log N, 128|U |} (with a huge margin). The
lemma gives that with high probability that

Z3 For any set L ⊆ S of up to (t + m)µq22Ks + 2αs + γs ≤ |F|p7/212 colours, there exists F ′ ⊆ F and a
rainbow path in CayFn

2
(L ∪

⋃
F ∈F ′ F ) starting at any vertex, otherwise contained in T \ U , and using

all except possibly one colour from L ∪
⋃

F ∈F ′ F.

Suppose indeed that outcomes Z1-Z3 do occur, and let us show that this implies the existence of the desired
path. First by Z2 we find an F-absorbing rainbow path PR ending at some vertex y0, otherwise contained in
R \ U , and using only colours SF from E. Next using Z1 we find rainbow paths PM,1, . . . , PM,t+m with internal

5We note that depending on the case we may take a better choice for some parameters, the choices here are taken as worst case.
6We note here that e.g. if i ≤ m, then we first reveal Si,1, declare the experiment a failure if the Chernoff bound fails, and only
apply the lemma in case of a positive outcome. At this stage Si,1 ∩ Si,2 is a completely fresh 2

3 -random subset. For i > t the same
applies with the roles reversed.
7Again, suppose i ≤ m, then we reveal S = Si,1, and declare failure if this Chernoff bound fails. Crucially, this does not reveal any
information about S′ = Si,1 ∩ Si,2 which remains a 2

3 -random subset. The situation in case i > t is similar.
8We note that if any of these Chernoff bounds fail, we consider the following two properties to have failed.
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vertices in M \ U , where Pi joins yi−1 and xi (with xt+m being arbitrary), which saturates all but some set Li

of up to µq|Wi| colours from Si,1 \ SF (for i ≤ m), from S′
i \ SF (for m < i ≤ t), and from Si,2 \ (SF ∪ c(Pi−t))

(for i > t). Let L = J2 ∪
⋃t+m

i=1 Li and note that we can connect the paths PR, PM,1, . . . , PM,t+m (joining them
by edges between xi, yi) to obtain a rainbow path, avoiding T \ U entirely, and using precisely the colours in
S \L. Note also that |L| ≤ |J2|+(t+m)µq ·maxi |Wi| ≤ |J1|+ |X|+(t+m)µq22Ks ≤ 2αs+γs+(t+m)µq22Ks

so that the hypothesis of Z3 is satisfied. Finally, by Z3 we can find a subfamily of gadgets F ′ ⊆ F and a
rainbow path PT starting at xt+m and otherwise contained in T \ U which uses all except possibly one colour in
L ∪

⋃
F ∈F ′ F . Now we use the F-absorbing properties of PR to remove

⋃
F ∈F ′ F and pass to a shorter path P ′

R

using only a subset of vertices of PR. Now by putting together P ′
R, PM,1, . . . , PM,t+m, PT we obtain a rainbow

path using all but one colour from S, as desired.

Figure 8. Illustration of the argument in Theorem 8.7 with t = 4, m = 3. W1, W5;
W2, W6; W3, W7 are pairs of cosets of the same subspace and the Wi are chosen to have
very small intersection W ′

i with any of the other Wj . We also have fixed “connection points”
y0, x1, y1, . . . , x7, y7, x0. PR is an absorbing path built inside a random subset R. PM,i is a path
built inside Wi intersected with a random set M , while avoiding W ′

i and all the connection
points, except xi, yi which it joins. PT is the path we build using the absorbing lemma using
up all the unused colors, with the help of activating some gadgets on PR.

□

8.2. Expanding case. In this section we will show that we can find a valid ordering of our set S ⊆ Fn
2 (or

equivalently we can find a rainbow path of length |S|−1 in CayFn
2
(S)) provided we can find E ⊆ S with suitable

everywhere-expanding properties.

Due to the lack of a global expansion property (note that while E expands well, it is still a small part of S) and
the fact that the flexible tuples that make up our gadgets do not consist of just a single colour, in order to deal
with the final couple of colours, we will need to make one additional tweak at the start of our absorbing path.

Definition. Given a flexible family F of gadgets in S ⊆ Fn
2 we define a corresponding absorbing fork (P, Q) to

consist of an F-absorbing path P that is disjoint, except at one of its endvertices, with an in-spider9 Q of F
started at the said endvertex. We refer to the other endpoint of P as the final vertex of the absorbing fork.

We now show that we can robustly embed absorbing forks in CayFn
2
(S) provided S is large enough. It will be

convenient to denote by Σ*(A) the set of all non-zero subset sums of a set A ⊆ Fn
2 .

Lemma 8.8. Let N = 2n, and E ⊆ S ⊆ Fn
2 such that |S| ≥ 211|E|. Given a flexible family F of subsets of E

we can find an F-absorbing fork (P, Q) in CayFn
2
(S) with |P | ≤ 8|F| + 1.

9The reader may wish to review our discussion following Definition 6.2 for the definition of an in-spider.
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Proof. For each F ∈ F let us choose a distinct c(F ) ∈ S \ ∪F ; we can do this since |S| − |
⋃

F| ≥ |F|. Next,
notice that by Proposition 6.4 (as in Lemma 6.6), for every F ∈ F there always exists a rainbow path PF using
precisely the colours in F ∪ c(F ).

It now remains to connect these paths together and join them to the in-spider. Let Q be the in-spider started
at 0 and let P be the longest rainbow path starting at 0 that we can construct in CayFn

2
(S), disjointly from

vertices of Q (other than 0 itself), such that P can be partitioned into translates of paths PF (at most one per
F ) joined by single edges (including one to 0). Suppose towards a contradiction that for some F ∈ F a translate
of PF does not appear in P . Consider the vertices in Q ∪ P + Σ*(F ∪ c(F )). Since |Q ∪ P | ≤ 5|F| + 8|F| − 7 <

13|F| and | Σ*(F ∪ c(F ))| ≤ 27, this set consists of less than 2000|F| vertices. On the other hand, there are
|S| − 8|F| > 2000|F| vertices that we can reach from the final vertex of P by following an edge in CayFn

2
(S) not

using a colour in
⋃

(F ∪ c(F)) or already used on the current path as connecting edges (noting that these make
up at most |F| additional forbidden edge-colours). If we move to such a vertex, then we can append PF at it
without any of its vertices intersecting Q ∪ P , and obtain a contradiction to the maximality of P . □

We will build our long rainbow path in stages by starting with an absorbing fork guaranteed by Lemma 8.8
which embeds a large family of gadgets. In each step we will append a new short path to the final vertex of
the fork at the expense of “activating” up to two gadgets. In order for this multi-stage procedure to be able
to continue we need to make sure the final vertex of the fork isn’t “blocked” by other vertices of the fork (see
Proposition 2.5 from our proof overview for a model version of this argument). With this in mind we say a final
vertex v of an F-absorbing fork (P, Q) is t-extendable if we can reach at least t leaves of the out-spider of F
started at v without intersecting P ∪ Q.

The meaning of the symbol ≪ below is consistent with its usage in Theorem 8.7, i.e. x ≪ y stands for the
assumption that x is sufficiently small with respect to y.

Theorem 8.9. Let 0 /∈ S ⊆ Fn
2 , N = 2n, s := |S| ≥

√
N/2, and suppose 1/s ≪ 1/K ≪ γ ≪ α ≪ 1. If there

exists a (γ/α, K/γ)-everywhere-expanding E ⊆ S of size αs, then we can find a rainbow path in CayFn
2
(S) of

length |S| − 1.

Proof. Lemma 6.3 applied to E provides us with a flexible family F0 of gadgets in E with |F0| = α2|E|/252 =
α3s/252. Let β := α3/252, so |F0| = βs. Next we apply Lemma 8.8 to provide us with an F0-absorbing fork
(P0, Q0) with |P0| ≤ 9|F0| = 9βs, and final vertex v0.

There are at least s − 9βs colours not appearing in P0. Let N0 denote the set of vertices u adjacent to v0 with
the edge v0u using one of these colours, and u /∈ P0 ∪ Q0, so in particular |N0| ≥ s − 24βs ≥ s/2. Next consider
an auxiliary bipartite graph with left side consisting of vertices in P0 ∪ Q0 and the right side being N0, where
we place an edge between a ∈ P0 ∪ Q0 and b ∈ N0 if the out-spider of F0 started at b contains a (equivalently
there exists an F ∈ F0 and the rainbow path using all but the last colour in F starting at b contains a). This
is equivalent to saying that the in-spider started at a contains b, so the degree of any a on the left is at most
5βs and there are at most 15βs vertices on the left side. On the other hand, there are at least s/2 vertices in
N0 so there exists u ∈ N0 with degree at most 250β2s in our auxiliary bipartite graph. If we extend our P0 to
such a vertex we obtain a new absorbing fork with the final vertex u being |F0| − 250β2s ≥ γs-extendable.

Let now (P, Q) be a maximal size F-absorbing fork with the final vertex v being γs-extendable, F ⊆ F0, and
1
2 |F0 \ F| ≤ |P | − (1 − γ) min{|P |, s − 8/γ}. Note that (P0, Q0) is such a fork for F0 so this is well-defined. Let
A ⊆ S denote the subset of available colours not used on P . Now we claim we can find a rainbow path PA in
CayFn

2
(A) using precisely 4/γ colours if |A| ≥ 8/γ, and min{|A|, 7} colours from A otherwise. If |A| ≥ 14 this

follows by the standard greedy argument which always allows us to find a path of length at least |A|/2, see [5,
Observation 2.2]. If |A| < 14, then we may simply use the fact from [1] that all sets of size up to 7 have a valid
ordering.

Now, since v is γs-extendable, there exists F ′ ⊆ F of size γs so that the F ′ out-spider started at v is disjoint
from the vertices of P ∪ Q (other than that it contains v itself). Let R denote the set of last elements of
gadgets in F ′, i.e. if we write the gadgets as F = {f1, . . . , f|F |} then R = {f|F | : F ∈ F ′}, and note that as
f1 + · · · + f|F |−1 = f|F | since our gadgets have zero sum, the set of leaves of this spider is simply v + R. Note
that R ⊆ E and has size γs, so by our everywhere-expanding assumption on E we know that |R + R| ≥ Ks.
This means that if we take a second step with an edge of colour in R, then we can reach at least Ks vertices
in v + R + R. There are at least Ks − 1 − s − 5βs − 5γs ≥ Ks/2 such vertices which are not in P ∪ Q (which
contains at most 1 + s + 4βs vertices) or in the F ′-outspider started at v (which contains at most 5βs vertices).
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Figure 9. Illustration of the argument behind Theorem 8.9. We have a maximal F absorbing
fork (P, Q) with suitably extendable endvertex. Using the expansion property we can outgrow
P ∪ Q in two steps by using a leg of an F out-spider and then taking one more step using a last
entry from a different gadget to reach many new vertices. We can then attempt to append to
all these vertices a short rainbow path PA using a number of unused colors. Since we have so
many choices from which we can start this path one can argue that many produce a PA disjoint
from the rest of the picture and ending in a new extendable vertex, contradicting maximality.

Further, as PA is a path using at most 8/γ colours, at most (8/γ) · (1 + 5β + 5γ)s ≤ Ks/4 paths PA translated
to start at these vertices in v + R + R can intersect P ∪ Q or the F ′ out-spider started at v, using here that
K ≫ α, γ. So at least Ks/4 such translates of PA will be disjoint from P ∪ Q and the F ′ out-spider started
at v. Let z = v + f|F1| + f|F2| ∈ v + R + R with F1, F2 ∈ F ′ be such a good vertex, meaning that if we start
at z and follow the colours of PA in order, then we obtain a rainbow path whose vertices are disjoint from
P ∪ Q and the F ′ out-spider started at v. Now we can extend the path P with endpoint v in our current
F-absorbing fork (P, Q) to a longer rainbow path by following from v the edges with colours in F1 \{f|F1|}, then
the edge with colour f|F2| to reach z, and finally the colours of PA in order. Note that this produces a genuine
path since F1 ∈ F ′ and the F ′ out-spider at v is disjoint from P ∪ Q by assumption, while the selection of z

guarantees that neither z, nor the vertices of the translated path PA cause collisions. Hence, each such extension
produces a new F \ {F1, F2}-absorbing fork by activating the gadgets F1, F2 to replace P with P − F1 − F2 to
maintain rainbowness. Note that we reintegrated all but the last colour of F1 into our extended rainbow path,
but only the first colour of F2. Hence, as our gadgets have size at most 6, any such new absorbing path P ′

has |P ′| ≥ |P | − 6 + 4/γ ≥ 1
2γ |F0 \ F| + 2

γ ≥ 1
2γ |F0 \ (F \ {F1, F2})| vertices if |A| = s − |P | ≥ 8/γ. Else, it

has at least |P ′| ≥ |P | + 1 ≥ 1
2 |F0 \ F| + (1 − γ)(s − 8/γ) + 1 = 1

2 |F0 \ (F \ {F1, F2})| + (1 − γ)(s − 8/γ) if
7 ≤ |A| = s − |P | < 8/γ, or in the final case the new path P ′ is missing precisely 6 colours with five being the
last five of F2.

In the final case, we can just append the leg of the in-spider Q corresponding to the five colours from F2 at
the start of the path P ′ and obtain a desired rainbow path of length |S| − 1. In the first two cases, in order
to contradict maximality we need to verify that at least one of these Ks/4 possible new final vertices is γs-
extendable in its new fork. For this we can repeat the argument with the auxiliary bipartite graph that we
used above; this time there are up to s + 5βs + 5γs ≤ 2s vertices on the left (consisting of P ∪ Q together
with the vertices of the F ′-outspider started at v) each sending at most αs edges10 to the right side (consisting
of the final vertices of our potential extended forks11) which has size at least Ks/4. So one vertex on the
right will have degree at most 8α

K s ≤ γs, call it v′. So for this vertex v′ at most γs of the leaves of the F
out-spider started at it are blocked by vertices in P ∪ Q or the F ′-outspider started at v. Note also that each
possible final vertex on such an extended path has a unique set of up to 8/γ vertices which can block at most
another 8/γ leaves of its out-spider (these blocked vertices coming from the translated path PA that we append),
but this is not an issue as in total the the new endpoint v′ is at least |F| − γs − 8/γ ≥ γs-extendable, since
|F| = |F0| − |F0 \ F| ≥ βs − 2 max{γs, s − (1 − γ)(s − 8/γ)} ≥ α3s/252 − 2γs ≥ 2γs + 8/γ, as β = α3/252 and
by our assumption that γ ≪ α. □

9. General dense case

In this section, we prove Theorem 1.4, which we restate below for convenience.

10We note that the edges in our auxiliary bipartite graph are defined by the full F out-spiders and not just the F ′ one.
11Which are precisely the translations of all good vertices by the path PA.
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Theorem 1.4. There is an absolute constant c > 0 such that for any finite (possibly nonabelian) group G,
every subset S ⊆ G \ {id} of size at least |G|1−c admits a valid ordering.

Due to lack of 0-sum subsets we will need to work with a different type of gadgets.

Definition (g-pair). Given a group G, g ∈ G, and S ⊆ G, a family of g-pairs in S of size t is a collection of
pairwise disjoint pairs (ai, bi)i∈[t] with ai, bi ∈ S, ai ̸= bi, and ai ∗ bi = g.

The next easy lemma allows us to find gadgets inside large subsets of arbitrary finite groups.

Lemma 9.1. Let G be a group, and let S ⊆ G. If |S| ≥ |G|1−ε ≥ 2, then for some g ∈ G there exists a family
of g-pairs in S of size at least |G|1−2ε/6.

Proof. There are |S|(|S| − 1) choices for distinct ai, bi ∈ S. On the other hand, there are |G| choices for ai ∗ bi

so by the pigeonhole principle, there are at least |S|(|S| − 1)/|G| ≥ |G|1−2ε/2 pairs with the same product.
Now given a fixed pair ai, bi there can be at most three pairs aj , bj ∈ G such that ai ∗ bi = aj ∗ bj , and
{ai, bi} ∩ {aj , bj} ≠ ∅. Indeed, if ai = aj or bi = bj we have (ai, bi) = (aj , bj), if ai = bj , then aj = aibia

−1
i ,

and if bi = aj , then bj = b−1
i aibi. Hence, we can find a subset from our list consisting of disjoint pairs of size

at least |G|1−2ε/6. □

Observe that for each vertex v of a Cayley graph, the 2-edge paths corresponding to a family of g-pairs always
terminate on the same vertex, that is, v ∗ g. The plan is to use a collection of colour pairs (ai, bi)i∈[t] to build a
number of paths of length two with the same start and end vertex, we call the resulting structure a theta-graph.
We will later stitch these theta-graphs along a path-like structure which we call a waveform. Theta-graphs and
waveforms will be defined formally below. See Figure 10 for an illustration.

Figure 10. A waveform that is a union of three theta-graphs. Notice that some colour pairs
repeat across certain theta-graphs. A rainbow path omitting the brown-orange colour pair is
highlighted.

The flexibility granted by each theta-graph is a choice as to which colour pair we get to use. The downside
compared to using 0-sums as in the previous sections is that the remaining pairs on the gadget remain unused.
As each colour pair eventually needs to be used somewhere, we need to choose which colour pairs occur on
which theta-graphs carefully. To articulate our demands, referring to a certain auxiliary bipartite graph on
parts (X, Z) will be helpful. Here, vertices of Z correspond to theta-graphs, and vertices of X represent the
g-pairs as given by Lemma 9.1. We wish to build a waveform where the gadget corresponding to a vertex z ∈ Z

will contain the g-pairs in its neighbourhood N(z) ⊆ X. No theta-graph should be too big (as then finding
absorbing structures in random subgraphs would be problematic), so the bipartite graph should have small
maximum degree. Furthermore, whenever we saturate a fraction of the g-pairs elsewhere (during the absorbing
step towards the end), we wish for a choice of g-pair for each theta-graph so that the union of these choices
correspond precisely to the remaining (unused) g-pairs. In the language of the bipartite graph, we wish to be
able to find perfect matchings between X \ X ′ and Z for a wide variety of choices of X ′.

The following proposition from [35] shows that bipartite graphs with such properties exist.

Proposition 9.2 ([35], Lemma 10.7). Let ℓ ≤ k be positive integers. There exists a bipartite graph, with
bipartition (X ∪ Y, Z) where X and Y are disjoint, |X| = k + ℓ, |Y | = 2k and |Z| = 3k such that:

(1) The maximum degree is at most 40.
(2) Given any subset X ′ ⊂ X with |X ′| = k, there is a perfect matching between X ′ ∪ Y and Z.
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We remark that the above is stated with ℓ = k in [35, Lemma 10.7], but the more general version above follows
simply by deleting an appropriate number of vertices from X. The construction from [35] is essentially a union
of 40 perfect matchings, sampled uniformly at random, and it is not hard to show that the desired properties
hold with positive probability.

The following definition describes how our absorbing structure will look like.

Definition (Absorbing family). Let G be a group, g ∈ G, and S ⊆ G. Given families Pflex ⊆ P of g-pairs in
S, we define a (Pflex, ℓ)-absorbing family in P to consist of P1, . . . , P|P|−ℓ ⊆ P such that |Pi| ≤ 40, for each i,
and for any P ′ ⊆ Pflex : |P ′| = ℓ there exist a system of distinct representatives pi ∈ Pi \ P ′.

The following is essentially an immediate consequence of Proposition 9.2.

Corollary 9.3. Let G be a group, g ∈ G, and S ⊆ G. Given a family P of g-pairs in S of size 3t + ℓ, with
ℓ ≤ t, we can find a (Pflex, ℓ)-absorbing family in P with Pflex ⊆ P of size t + ℓ.

Proof. Suppose the bipartite graph B and X, Y, Z are given as in Proposition 9.2. We identify X ∪Y with P, set
Pflex = X and define Pi to be the set of neighbours of the i-th vertex in Z. Note that |Pi| ≤ 40 since by property
(1) maximum degree in B is at most 40 and that property (2) of B precisely translates to P1, . . . , P3t, Pflex
having the desired property. □

We now describe how we embed the absorbing family. The building blocks are theta graphs.

Definition (Theta-graph). Given a family P of g-pairs in a group G, the theta graph of P started at v, denoted
by T (v, P), is obtained by starting at v ∈ G and including the |P| paths of length two following the edges with
colours ai, bi from each pair in P.

Observe that each of the paths in the above definition terminate at the vertex v ∗ g = v ∗ (ai ∗ bi).

Definition (Waveform). Let G be a group, g ∈ G, S ⊆ G, and P1, . . . , Pt be families of g-pairs in S. We
define a corresponding waveform starting at u ∈ G as a subgraph of CayG(S) consisting of vertex disjoint
u, T (v1, P1), . . . , T (vt, Pt) joined by edges (u, v1), (v1 ∗ g, v2), (v2 ∗ g, v3) . . . , (vt−1 ∗ g, vt) ∈ S of distinct colours,
disjoint from any colour belonging to a pair in

⋃t
i=1 Pi.

The key property of a waveform of a (Pflex, ℓ)-absorbing family ensured by this definition is that by choosing
which paths of length two (corresponding to certain g-pairs) we use when going through each theta graph in the
waveform, we can find a path which uses all the pairs apart from any subcollection of ℓ pairs in Pflex (allowing
us to “absorb” such families). We will refer to choosing such a subpath of the waveform as collapsing the
waveform. We now present an analogue of Lemma 6.6. The proof idea is similar.

Lemma 9.4. Let G be a group, g ∈ G, and E ⊆ G. Let P1, . . . , Pt be families of g-pairs in E with |Pi| ≤ 40,
for each i. Let R be a p-random subset of G for some p ∈ (0, 1]. Then, provided |E|p42/218 ≥ max{t, log |G|},
with high probability, we can find a corresponding waveform in CayG(E) starting at an arbitrary u ∈ G and
otherwise being within R.

Proof. Let N = |G|. Now for every vertex v ∈ G, and Pi we define the event Ev,i to happen if for at least 50t

of e ∈ E \
⋃t

i=1 Pi the theta graphs T (v ∗ e, Pi) are completely sampled into R, and are vertex disjoint. We note
that the vertices of T (v∗e, Pi) can intersect at most 422 other T (v∗f, Pi). Indeed, T (v∗e, Pi) consists of at most
42 elements and if we specify which of them also belongs to T (v ∗ f, Pi) and which of the up to 42 of its vertices
it matches we can uniquely reconstruct f . This implies we can find at least (|E| − 80t)/(422 + 1) ≥ |E|/211 of
T (v ∗ e, Pi) which are vertex disjoint. Each of them gets sampled into R with probability at least p42 and these
samples are independent between our vertex disjoint collection of T (v∗e, Pi). Hence, their number stochastically
dominates Bin(|E|/211, p42). So, by Chernoff bound at least |E|p42/212 ≥ 50t survive with probability at least
1 − exp(−|E|p42/214) ≥ 1 − 1/N3. In other words, Ev,i holds with at least this probability. Hence, by a union
bound we can ensure that with probability at least 1 − 1/N all events Ev,i occur.

Finally, we show that in any such outcome we can find our P-absorbing waveform. Indeed, take a maximal
collection of T (v ∗ e, Pi), at most one for each i, which make a waveform started at u. Assume towards a
contradiction that there exists a Pi which has not been embedded yet. We note that we are using at most 42t

vertices, and at most t colours on the edges joining our theta graphs and that we have more than 50t ways to
append a T (v ∗ e, Pi) to the final vertex v of the current waveform. At most t of the colours e are blocked and
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at most 42t of the (vertex disjoint) T (v ∗ e, Pi) which we know survived sampling can intersect the structure
that we built so far. So we can find one which can be used to extend our current waveform by embedding Pi,
contradicting maximality. □

We will also need a slightly tweaked version of the absorbing lemma (Lemma 6.7).

Lemma 9.5. Let Pflex be a family of g-pairs in a group G, with |Pflex| ≥ t + ℓ ≥ 29p−3 log |G|, for some
p ∈ (0, 1]. Let T be a p-random subset of G. Then, with high probability, for every L ⊆ G \

⋃
Pflex of size

|L| ≤ ℓ < tp3/80, and any v ∈ G there is a rainbow path starting at v, otherwise contained in T , using all
colours from L ∪

⋃
P ′ except possibly one, for some P ′ ⊆ Pflex of size precisely ℓ.

Proof. Consider a pair of distinct colours a, b ∈ G. Our first goal is to construct a family Pa,b of at least t/10
vertex disjoint (except at the identity id) paths of length three, starting at id and using an edge of colour ai

for some (ai, bi) ∈ Pflex followed by edges of colour a, and then b. Note that for fixed a, b, each such path can
intersect at most nine other paths so we can find a collection of |Pflex|/10 ≥ t/10 such vertex disjoint paths.

Now given any u ∈ G and two colours a, b ∈ S we define the event Eu,a,b to happen if there are more than 6ℓ

of P ∈ Pa,b which when translated to start at u are sampled into T . The number of such paths which survive
subsampling stochastically dominates Bin(t/10, p3) so by Chernoff’s bound we can ensure with probability at
least 1 − exp(tp3/80) ≥ 1 − 1/N4 that at least tp3/20 > 4ℓ of these paths survive (i.e. Eu,a,b occurs). A union
bound over all u, a, b ensures that with probability at least 1 − 1/N all Eu,a,b occur. Let us fix such an outcome
and show the desired conclusion holds.

We will construct a sequence of sets L = L0, L1, . . . , L|L|−1 and a sequence of directed rainbow paths v = P0 ⊂
P1 ⊂ · · · ⊂ P|L|−1, as follows. Suppose we constructed Li, Pi, and that |Li| ≥ 2. We pick some distinct a, b ∈ Li.
By our assumption on the outcome of sampling T , we obtain more than 4ℓ ≥ 4|L| vertex-disjoint rainbow paths,
each of which uses edges with colours aj , a, b for distinct (aj , bj) ∈ Pflex, which start at the endpoint of Pi and
lie in T . Provided one of these paths uses a colour aj from a new pair, and is vertex disjoint from Pi, we
append it to Pi to obtain Pi+1. To obtain Li+1 from Li, we remove a, b and add bj . Note that this ensures
|Li+1| = |Li| − 1, so the process can indeed run ℓ − 1 steps, provided we can always find a suitable short path to
extend by. Note also that by construction Pi uses colours from at most i pairs in Pflex (besides the colours from
L) and has length 3i. So when constructing Pi+1 at most i pairs are already used, and at most |Pi| − 1 = 3i of
our short paths can intersect Pi, so we indeed can always choose a short path to extend Pi by into Pi+1.

At the end of this process we used at most |L| − 1 ≤ ℓ pairs from Pflex and embedded all the colours from these
pairs as well as from L except possibly one. To that ensure we use up exactly ℓ pairs, we continue the process
to find L = L|L|, . . . , Lℓ each of size one and Pℓ ⊃ . . . ⊃ P|L| ⊃ P|L|−1 such that for each i ≥ |L| we have
|Pi| = |Pi−1| + 2, and that Pi \ Pi−1 uses the colour in Li−1 together with a new colour from

⋃
Pflex. To see

that we can do this, suppose that we are at stage i − 1 ∈ [|L| − 1, ℓ) and that the current path Pi−1 ends in the
vertex v. Then we pick a to be the (unique) colour in Li−1 and b ̸= a to be an arbitrary other colour. As the
event Ev,a,b holds, there is some new Pi = (ai, bi) (not yet used on the path) so that we may extend our current
path by appending the edges going from v to v ∗ ai to v ∗ ai ∗ a (and we simply do not use the colour b edge in
the path guaranteed by the above process), in order to construct Pi (and replace a with bi in Li). Since we do
have more than 4ℓ choices, the argument can continue until we used up exactly ℓ pairs from Pflex, as desired.

□

As in Section 7 we start by showing the theorem when |S| ≥ 3
4 N due to tighter space constraints.

Theorem 9.6. Let G be a group of size N , and let N be sufficiently large. Let S ⊆ G have size |S| ≥ 3
4 N .

Then CayG(S) has a rainbow path of length |S| − 1.

Proof. Set γ = 2−20. If |S| ≥ N − N1−γ , then we are done by Theorem 7.1 so let us assume |S| ≤ N − N1−γ .
Let us also set p = N−2γ/2.

Let E be a 1
8 -random subset of S. Let us also partition Fn

2 into three sets R ⊔ M ⊔ T where every vertex is
(independently) assigned to one of R, M, T with probabilities p, 1 − 2p, p, respectively.

First, we apply Lemma 5.7 with S = S, J = ∅, M = M, S′ = E and the following choice of parameters

ε = 3
4 , ζ = 1

4 , q = 1 − 2p, q′ = 1
8 , µ = N−90γ/276.
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Since 1 − 2p = q ≥ (1 + µ)(1 − N−γ), and q′ ≤ 1 − µq/4, we may indeed apply the lemma. So, with high
probability

D1 for any SF ⊆ E we can join arbitrary two vertices by a rainbow path with all internal vertices in M

which uses up all but at most µqN colours from S \ SF .

Let us now reveal our random subset E. Chernoff’s bound guarantees that with high probability |E| ≥ N/16
(as before we declare failure if this is not the case and do not apply the following lemmas). Let

t := N1−84γ/266, ℓ := tp3/27 = N1−90γ/276.

Using Lemma 9.1 we can find a g and a family of g-pairs P in E of size 3t + ℓ ≤ N/211. Using Corollary 9.3 we
can find a (Pflex, ℓ)-absorbing family P1, P2, . . . , P3t in P with Pflex ⊆ P of size t + ℓ.

We apply Lemma 9.4 to P1, P2, . . . , P3t with random set R, noting that we can do so since |E|p42/218 ≥ 3t ≥
log N . So, with high probability

D2 there is a waveform corresponding to P1, P2, . . . , P3t starting at any vertex and otherwise being in R.

Finally, we apply Lemma 9.5 to Pflex with random set T . We can do so since t+ℓ ≥ 29p−3 log N and ℓ < tp3/80.
So, with high probability

D3 for any L ⊆ S of size |L| ≤ ℓ there is a rainbow path using all but possibly one colour from L ∪
⋃

P ′

for some P ′ ⊆ Pflex of size precisely ℓ starting at an arbitrary vertex and otherwise contained in T .

Let us fix an outcome in which all three of the above properties hold. D2 gives us a waveform corresponding
to P1, P2, . . . , P3t completely contained in R and ending at some vertex v. Let SF ⊆ E be the set of 6t + ℓ

colours used by the waveform (note that P = P1 ∪ . . . ∪ P3t by the properties of an absorbing family). Now
D1 allows us to find a rainbow path PM starting at v and ending at some u ∈ T and otherwise contained in
M , which saturates all but some set L of up to µqN ≤ ℓ colours from S \ SF . Finally, by D3 we can find
P ′ ⊆ Pflex of size precisely ℓ and a rainbow path PT contained within T , which uses all except possibly one
colour in L ∪

⋃
(ai,bi)∈P′{ai, bi}. Now by the absorbing property we know that there is a system of distinct

representatives for Pi \ P ′ one for each i ∈ [3t]. Now we can follow the length two paths in our waveform
corresponding to precisely these pairs to use up all the colours in SF \

⋃
(ai,bi)∈P′{ai, bi}. A concatenation of

these three paths uses all colours except possibly one, as desired. □

We are now ready to prove the main theorem of the section, Theorem 1.4, in the following more precise form.

Theorem 9.7. Let G be a group of size N , and let N be sufficiently large. Let S ⊆ G have size |S| ≥ N1−γ ,
where γ = 2−20. Then CayG(S) has a rainbow path of length |S| − 1.

Proof. Let ε = N−γ so that |S| ≥ εN , and we may assume that ε ≤ 2−20.

Let us first apply Corollary 4.1 (with ε = ε and σ = |S|/|G| ≥ ε) to find a subgroup H of G such that
|S ∩ H| ≥ (1 − ε)|S| and that CayH(S ∩ H) has no ε4/1000-sparse cuts. Let S0 := S ∩ H and J := S \ H.

We will need to distiguish two cases based on whether our S0 fills in most of H or not.

Case 1. |S0| ≤ 3
4 |H|.

In this case we set S1 = S0, S2 = ∅.

Case 2. |S0| ≥ 3
4 |H|.

Note that if S \ H = ∅, then we are done by Theorem 9.6. So, we may assume that J = S \ H ̸= ∅. We take S1
to be a 3

4 -random subset of S0, and then we set S2 to contain S0 \ S1 together with a 2
3 -random subset of S1.

So, in particular, S2 is also a 3
4 -random subset of S0. While S2 is clearly not independent of S1, we do know by

construction that if we reveal either S1 or S2, then S1 ∩ S2 is still a genuinely 2
3 -random subset of it. Note also

that we always ensure S1 ∪ S2 = S0.

We will deal with the two cases in a very similar way with a few key differences.

Let S′ and E be disjoint 1
4 -random subsets of S0. Let us set p := 1/32, and let A ⊔ R ⊔ M ⊔ T be a random

partition of G where every vertex is (independently) assigned to one of A, R, M, T with probabilities p, p, 1−3p, p,
respectively.
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Next, let us fix a coset sH of H. We apply Lemma 5.7 with G = sH, S = S1, J = ∅, M = M, S′ = S′ ∪ E ∪
(S1 ∩ S2). The parameters we can use are

ε = N−γ/2, ζ = ε4/1000, q = 1 − 3p, µ = N−2γ/238, q′ = 5/6.

In order to be able to apply the lemma, we check the assumptions. We need |S1| ≥ 5
8 |S0| ≥ 5

8 (1 − ε)|S| ≥ ε
2 N ≥

ε
2 |H|, where the first inequality, for Case 2, holds with high probability by a Chernoff bound12. We also need
that CayH(S1) has no ζ-sparse cuts; this holds if we are in Case 1 as then S1 = S0 and S0 has no ζ-sparse cuts
by construction, and in Case 2, since then |S1| ≥ 5

8 |H| with high probability (by same Chernoff bound as above)
and hence CayH(S1) does not even have 1

8 -sparse cuts. We further need that q ≥ (1 + µ)|S1|/|H|, which does
hold since we ensured |S1| ≤ 5

6 |H| in either case (in Case 1 this is trivial, while in Case 2, this again follows
from a Chernoff bound). Finally, q′ ≤ 1 − µq/4 holds with a lot of room to spare. Hence, the lemma tells us
that with probability at least 1 − 7/|H|

F1 for any SF ⊆ S′ ∪E ∪ (S1 ∩S2) we can find a rainbow path in CaysH(S1) with all internal vertices in M

which joins two arbitrary vertices (of our choosing) of sH, and uses all but µq|H| colours from S1 \ SF .

Moreover, since there are |G|
|H| ≤ |G|

(1−ε)|S| ≤ 2Nγ ≤ o(|H|), we can ensure that F1 holds for all cosets sH.

If we are in Case 2, we will need another application of Lemma 5.7, this time with S = S2, and all the other
sets and parameters chosen to be the same as above. So, the same verification we did above applies and the
lemma tells us that with high probability

F2 for any SF ⊆ S′ ∪ E ∪ (S1 ∩ S2) we can find a rainbow path in CayH(S2) with all internal vertices in M

which joins two arbitrary vertices (of our choosing) of H, and uses all but µq|H| colours from S2 \ SF .

We know that |E| ≥ |S0|/8 ≥ |S|/16 ≥ p−2 max{40|J |, 96 log |G|} with high probability, so Lemma 6.1 (applied
with G = G, E = E ∪ J and J = J) tells us that with high probability

F3 there is a rainbow path in CayG(E ∪ J) using all colours from J , starting at an arbitrary vertex, and
otherwise being in A.

We reveal S′ from now on and assume that |S′| ≥ |S0|/8 ≥ |S|/16, which holds with high probability by a
Chernoff bound. We note that both upcoming lemmas are hence only random in terms of using the random
subsets R, T respectively, which are completely independent of S′. Let now

t := N1−2γ/214, ℓ := tp3/80.

Using Lemma 9.1 we can find a g ∈ H and a family of g-pairs P in S′ of size 3t + ℓ ≤ N1−2γ/212. Using
Corollary 9.3 we can find a (Pflex, ℓ)-absorbing family P1, P2, . . . , P3t in P with Pflex ⊆ P of size t + ℓ.

Next, Lemma 9.4 (applied with G = G, g = g, E = S′, the p-random set R, and to the families of g-pairs
P1, . . . , P3t), which is allowed since the condition |S′|p42/218 ≥ max{3t, log |G|} is satisfied, tells us that with
high probability

F4 we can embed P1, . . . , P3t into a waveform starting at an arbitrary vertex and otherwise contained
within R, using only colours from S′.

Finally, Lemma 9.5 (applied with G = G, g = g, a p-random subset T and applied to Pflex), which is allowed
since the condition |Pflex| = t + ℓ ≥ 29p−3 log N is satisfied, tells us that with high probability

F5 for any L such that |L| ≤ ℓ = tp3/80 we can find a rainbow path starting at an arbitrary vertex,
otherwise contained in T , and using all the colours from L and some subfamily of Pflex consisting of
precisely ℓ pairs, except possibly one.

Suppose now that all the above outcomes do occur.

First, using F2, we find a rainbow path PM,1, contained in M , starting at an arbitrary vertex in M ∩ H, using
all the colours from S2 \(S′ ∪E) except some subset L2 of at most µq|H| colours13. Note that since S2 ⊆ S0 ⊆ H

that this path is completely contained in H. Let S′′
F be the set of colours used on PM,1 and let v be its other

endpoint.

12We note that we reveal S1 before applying the lemma, declare the following property to fail if this Chernoff bounds fails, and
that this leaves S1 ∩ S2 as a genuinely 2

3 -random subset of S1.
13If we are in Case 1, this technically doesn’t follow from F2 but since S2 = ∅ we may simply take PM,1 to be a single vertex path.
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Next, we let PA be a minimal length rainbow path starting at v, otherwise contained in A, using all the colours
from J and some subset of colours from E. We know such a PA exists by property F3. Let u be the endpoint
of PA. By minimality, we know that the colour j of the last edge of PA is in J = S \ H. So, if u ∈ H, we delete
this last edge from PA to ensure its endpoint is in a coset sH for some s /∈ H. Let S′

F be the set of colours from
E used by PA.

Next, using F4 we find a waveform WR embedding P1, . . . , P3t starting at the endpoint of PA, and otherwise
contained in R, and using only some colours SF from S′. Let w be the other endpoint of PR. Note that w is
still contained within the same coset sH since S′ ⊆ H.

Now using F1 we can find a rainbow path PM,2 with starting vertex w, otherwise contained within M , which
saturates all but some set L1 of up to µq|H| colours from S1 \ (SF ∪ S′

F ∪ S′′
F ). Observe that since w ∈ sH and

S1 ⊆ H we know PM,2 is completely contained in sH, and is in particular vertex disjoint from PM,1 (which was
fully contained in H).

We set L := L1 ∪ L2 to be the set of colours that we have yet to integrate in our rainbow path, and we add the
single element j to it if we deleted it from PA above. In particular, |L| ≤ 2µq|H| + 1 ≤ ℓ.

At this point we know that for any family P ′ of precisely ℓ pairs from Pflex we can collapse the waveform WR

into a path PR by following the system of distinct representatives for P1 \ P ′, . . . , P3t \ P ′ guaranteed by the
absorbing property (note that this includes precisely the pairs in P \ P ′) so that PM,1 ∪ PA ∪ PR ∪ PM,2 is a
rainbow path, avoiding T entirely and using precisely the colours in S \

(
L ∪

⋃
(ai,bi)∈P′{ai, bi}

)
. Note that it

is indeed a path avoiding T since PM,1 ⊆ H ∩ M , PA \ {v} ⊆ A, PR \ {u} ⊆ R, and PM,2 \ {w} ⊆ sH ∩ M .

Finally, by F5 we can find P ′ ⊆ Pflex of size precisely ℓ and a rainbow path PT starting at w and otherwise
contained in T which uses all except possibly one colour in L ∪

⋃
(ai,bi)∈P′{ai, bi}. Taking the path PR as above

corresponding to this P ′ we get that PM,1 ∪ PA ∪ PR ∪ PM,2 ∪ PT is a rainbow path using all but one colour
from S, as desired. □

10. Concluding remarks

As we have seen in Section 9, our methods in the case of dense subsets S ⊂ G applied equally as well to
solve Problem 1.1 over arbitrary groups as in the specialised setting of Fn

2 . The basic randomness vs. structure
dichotomy that we use (see Section 2) also translates well to general groups. However, a key complication for
general groups is that the structure of subsets with bounded doubling is more complicated; already for Fp one
has to work with generalised arithmetic progressions in place of proper subgroups. In particular, over Fp, we
have no means of passing to a robust expander of size O(|S|) and finishing most of the job there. There are also
further complications for Fp for the absorption part of the argument, not least because we do not have access
to popular sums as we did over Fn

2 , or in the dense case. Novel ideas are required to settle both of these issues
in order to use our framework to settle Graham’s conjecture for large p.
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Appendix A. Extremely dense case

For brevity, we write K−
G := CayG(G \ {id}) in this appendix.

For subsets R, C ⊆ G, we write K−
G [R; C] to denote the subgraph of K−

G induced on vertex set R by the edges
with colours in C. For disjoint subsets V1, V2 ⊆ G, we write K−

G [V1, V2; C] to denote the bipartite subgraph of
K−

G obtained by keeping only the directed edges from V1 to V2 with colours in C.

The following lemma is part of Lemma 6.22 from [36]. The proof combines the sorting network method and
the statement of the random Hall–Paige conjecture. The original statement pertains to both addition and
multiplication tables, but to reduce clutter we have included only the part that we will need. In the remainder
of this appendix, we will perform many calculations in the abelianisation G/[G, G] of G; since the order of
multiplication does not matter in the abelianisation, product notation such as

∏
v∈V v is unambiguous.

Lemma A.1. Let 1/n ≪ γ, p ≤ 1, and let (log n)7 ≤ t ≤ (log n)8 be an integer. Set q := p/(t − 1). Let G

be a group of order n. Let Vstr, Vmid, Vend be disjoint random subsets of G with Vstr, Vend q-random and Vmid
p-random. Let C be a (q + p)-random subset of G, sampled independently of Vstr, Vmid, Vend. Then with high
probability the following holds for all choices of C ′ ⊆ G and disjoint subsets V ′

str, V ′
end, V ′

mid ⊆ G:

If C ′, V ′
str, V ′

end, V ′
mid satisfy that

(1) for each of the four random sets R = Vstr, Vmid, Vend, C, we have that |R∆R′| ≤ n1−γ ;
(2)

∏
V ′

end · (
∏

V ′
str)−1 =

∏
C ′ (mod [G, G]);

(3) id /∈ C ′;
(4) |V ′

str| = |V ′
end| = |V ′

mid|/(t − 1) = |C ′|/t,

then for every bijection f : V ′
str → V ′

end, the graph K−
G [V ′

str ∪ V ′
end ∪ V ′

mid; C ′] has a rainbow collection of vertex-
disjoint paths {Pv : v ∈ V ′

str}, where each Pv has length t and starts at v and ends at f(v).

We can now prove the main result of the appendix. Theorem 6.9 of [36] gives a sharper version of this result
in the regime γ ≥ 1/2. In fact, the same proof works verbatim for any values in the range 1/n ≪ γ < 1, but
this flexibility is unfortunately not recorded in [36], as the authors did not anticipate that it would have further
applications. We follow the proof from [36] quite closely in the below.

Theorem A.2. Let 1/N ≪ γ ≤ 1. If G is a group of order N and S ⊆ G\{id} is a subset with |S| ≥ N −N1−γ ,
then S has a valid ordering, i.e., the Cayley graph CayG(S) has a directed rainbow path with |S| − 1 edges.

Proof. We will take distinct x, y ∈ G so that yx−1 =
∏

S (mod [G, G]), and show that there exists a directed
rainbow path from x to y with |S| edges. Note however that if G is abelian and

∑
S = 0, such distinct x and y

do not exist. In this case we simply delete an element of S so that
∑

S ̸= 0, and then applying our argument
below with this new S still produces the desired rainbow path with |S| − 1 edges.

Set t := 2⌊(log N)7⌋ and s := |S|. Set q = 1/(2t) and set p = (t − 1)q. Take a random partition of G as Vstr,
Vend, Vmid,1, Vmid,2 of G where the former two are q-random and the latter two are p-random. Independently,
take a random partition of G into (q + p)-random sets C0 and C1 of G.
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With high probability, Lemma A.1 applies with Vstr, Vend, Vmid,1, and C0 (set to be C in the statement of
Lemma A.1) and t, and Lemma A.1 also applies with Vstr and Vend interchanged, with Vmid,2 instead of Vmid,1,
and C1 playing the role of C. In both these applications of Lemma A.1, let γ/10 play the role of γ. Furthermore,
we can ensure that each random set with randomness parameter z contains, for each g ∈ G, Ω(z3N) disjoint
triples consisting of distinct group elements a, b, c with abc = g, call this property (∗). This follows by observing
that there are at least Ω(N) such triples in the group14, and then applying Chernoff’s bound. Indeed, each
random set with parameter z has within zN ± N0.6 elements, with high probability, by Chernoff’s bound.

Fix the random sets with the properties listed above. Pick ℓ to be the maximum integer value satisfying
2tℓ − t + 1 ≤ s + 1. Note that ℓ = qs + O(1) = qN ± N1−γ/2. Define w = (s + 1) − (2tℓ − t + 1), noting that
w ≤ (log n)10. Observe that we can greedily fix an S-rainbow path P0 starting at x, terminating at some x′,
with exactly w + 1 vertices, disjoint with y.

Now, we define subsets of (V \ V (P0)) ∪ {x′} as V ′
str, V ′

end and V ′
mid,1 and V ′

mid,2 so that x′ ∈ V ′
str, y ∈ V ′

end,
ℓ = |V ′

str| = |V ′
end| = |V ′

mid,1|/(t − 1) = |V ′
mid,2|/(t − 1) (this being possible due to the divisibility condition

coming from the size of P0). Similarly, we partition S \ C(P0) into C ′
0 of size tℓ and C ′

1 of size t(ℓ − 1).
Furthermore, we can interchange a few elements, thanks to property (∗), so that

∏
V ′

str \ {x′} =
∏

V ′
end \ {y} =∏

C ′
1 = id (mod [G, G]). Observe that this implies

∏
C ′

0 =
∏

S (
∏

C(P0))−1 (mod [G, G]). Whilst doing these
interchanges, we can maintain that |Z∆Z ′| ≤ n1−γ/2 for each set Z.

We may now invoke Lemma A.1 for the sets V ′
str \{x′}, V ′

end \{y}, V ′
mid,2, C ′

1 with an arbitrary choice of bijection
to get a partition into paths of length t with starting points in V ′

end \ {y} and endpoints in V ′
str \ {x′}. We

wish to now invoke Lemma A.1 in the opposite orientation, with the sets V ′
str, V ′

end, V ′
mid,2, C ′

1, with a choice
of bijection we will shortly specify that will ensure everything links up in a path. First, we check the relevant
product condition.

Claim A.3.
∏

V ′
end(

∏
V ′

str)−1 =
∏

C ′
0 (mod [G, G])

Proof. All the remaining inequalities should be interpreted modulo [G, G]. Note first that
∏

V ′
end(

∏
V ′

str)−1 =
y(x′)−1 as from the previous exchanges we had ensured that

∏
V ′

str\{x′} =
∏

V ′
end\{y}. Recall that yx−1 =

∏
S,

and that as P0 is a path from x to x′,
∏

C(P0) = x′x−1. Combining, we obtain that y(x′)−1 =
∏

S(
∏

C(P0))−1

(mod [G, G]). We has also previously ensured that
∏

C ′
0 =

∏
S (

∏
C(P0))−1, which implies the claim. □

Now, we specify the bijection that will ensure that the concatanation of all paths we have constructed so far
yields a S-rainbow path from x to y. Suppose that the endpoints of the previous collection of paths were
y1 → x1, y2 → x2, . . ., yℓ−1 → xℓ−1. Then, the bijection we choose maps x1 → y2, x2 → y3, . . ., xℓ−2 → yℓ−1,
xℓ−1 → y, x′ → y1. The union of the resulting paths from the two applications of Lemma A.1 combined with
P0 yields a rainbow path with edge colours precisely S, from x to y, as desired.

□

14There are
(

N
2

)
choices for a, b, each giving a unique choice for c such that abc = g. On the other hand there are at most O(N)

options with a = c or b = c, and at most O(N) other triples using one of a, b, or c.
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